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Abstract. This article is devoted to the results of in-depth analysis of the system of 

binary-oppositional structures in DNA n-plet alphabets and their algebraic-matrix 

representations. These results show that the molecular complementary replication of 

DNA strands is accompanied by the presence of an algebraic version of the principle 

"like begets like" in matrix representations of DNA alphabets having internal structures. 

This algebraic version is based on binary-oppositional structures in the genetic 

molecular system, which can be represented by binary numbers and corresponding 

matrices of DNA alphabets. The received results allow thinking that the phenomenon 

"like begets like" (or a complementary replication in a wide sense) is systemic in the 

genetic organization and is connected with algebraic features of biological 

organization. Correspondingly, the biological principle "like begets like" can be 

additionally modeled by algebraic-matrix methods and approaches. Such algebra-

matrix modeling of the genetic coding system gives new ways for studying and 

understanding the key role of the named principle in genetic and other inherited 

physiological complexes. On this way, the author discovered general rules of stochastic 

organization of information binary sequences of genomic DNAs of eukaryotes and 

prokaryotes. The presented rules are connected with information dichotomies of 

probabilities and corresponding fractal-like trees of probabilities, which fundamentally 

differ from constructional dichotomies in biological bodies. The received 

phenomenological data and rules lead to new biological ideas. 
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1. Introduction 

The DNA double helix model created by J.D. Watson and F. Crick in 1953 gave a 

powerful impetus to the development of genetic research. It showed the world a 

recursive algorithm for the complementary replication of DNA strands, which ensures 

the replication of the genetic information recorded on these strands. Before the 

complementary replication, DNA is separated in two complementary strands. Each 

strand of the original DNA molecule serves as a template for the production of its new 

complementary counterpart. This seminal work by Watson and Crick was perceived as 

the discovery of a key secret of life, corresponding to the ancient notion that "like begets 

like". Scientists were struck by how simple and beautiful this explanation of the 

replication and preservation of genetic information based on the mechanism of 

complementarity turned out to be. It was emphasized that it is this complementarity that 

provides the most important properties of DNA as a carrier of hereditary information 

(see, for example, [Chapeville, Haenni,1974]). 

The complementary replication of DNA occurs in all living organisms acting as 

the most essential part of biological inheritance. This is essential for cell division during 

the growth and repair of damaged tissues, while it also ensures that each of the new 

cells receives its own copy of the DNA. The cell possesses the distinctive property of 

division, which makes complementary replication of DNA essential. Complementary 

replication of DNA strands occurs at an astonishing speed rate. For example, the well-

known bacteria E. coli has a speed of replication of over 1,000 bases per second [Bank, 

2022].  

The genetic information in DNA molecules is represented in the form of 

sequences of four types of nucleobases: adenine A, guanine G, cytosine C, and thymine 

T. Their set is often referred to as the 4-letter DNA alphabet. Along with it, other DNA 

alphabets exist: alphabets of 16 doublets, 64 triplets, 256 tetraplets, and other n-plets. 

In particular, the alphabet of 64 triplets is used in the genetic system to encode amino 

acids and termination signals of protein synthesis. Taking into account the existence of 

different alphabets of DNA n-plets turns out to be useful for revealing hidden 

regularities in the stochastic organization of genomic DNAs [Petoukhov, 2008, 2020, 

2021a,b; Petoukhov, He, 2010]. These DNA alphabets have binary-oppositional 

structures, which allow representing the alphabets in a comfortable form of (2n*2n)-

matrices with dispositions - inside these matrices - of all corresponding n-plets in strict 

arrangements on the basis of their individual molecular peculiarities [Petoukhov, 2008; 

Petoukhov, He, 2010].  

The purpose of this article is to describe the author's results of an in-depth 

analysis of the system of binary-oppositional structures in these DNA alphabets and 



        

 

 

their algebraic-matrix representations. These results show that the molecular 

complementary replication of DNA strands is accompanied by the presence of an 

algebraic version of the principle "like begets like" in the named matrix representations 

of DNA alphabets. This algebraic version is based on binary-oppositional structures in 

the genetic molecular system, which can be represented by binary numbers and 

corresponding matrices of DNA alphabets. The received results allow thinking that the 

phenomenon "like begets like" (or a complementary replication in a wide sense) is 

systemic in the genetic organization and is connected with algebraic features of 

biological organization. Correspondingly, the biological principle "like begets like" can 

be additionally modeled by algebraic-matrix methods and approaches. Such algebraic-

matrix modeling of the genetic coding system gives new ways for studying and 

understanding a key role of the named principle in genetic and other inherited 

physiological complexes. 

 

2. Symmetries and binary principles in the molecular genetic system 

 

The four nucleobases of DNA are interrelated by their symmetrical peculiarities into 

the united molecular ensemble having the three pairs of binary-oppositional traits or 

indicators [Fimmel, Danielli, Strüngmann, 2013; Petoukhov, 2008; Petoukhov, He, 

20010; Stambuk, 1999]: 

- 1) Two letters are purines (A and G), and the other two are pyrimidines (C and 

T). From the standpoint of these binary-oppositional traits one can denote                

C = T = 0, A = G = 1. From the standpoint of these traits, any of the DNA-

sequences are represented by a corresponding binary sequence. For example, 

the sequence GCATGAAGT is represented by binary sequence 101011110;  

- 2) Two letters are amino-molecules (A and C) and the other two are keto-

molecules (G and T). From the standpoint of these traits one can designate              

A = C = 0, G = T = 1. Correspondingly, the same sequence GCATGAAGT, as 

above, is represented by another binary sequence, 100110011;  

- 3) The pairs of complementary letters, A-T and C-G, are linked by 2 and 3 

hydrogen bonds, respectively. From the standpoint of these traits, one can 

designate C = G = 0, A = T = 1. Correspondingly, the same sequence 

GCATGAAGT, is read as the binary sequence 001101101. 

These three types of binary representations form a common logic set on the basis 

of logic operation of modulo-2 addition denoted by the symbol ⊕: modulo-2 addition 

of any two such binary representations of the DNA-sequence gives a sum, which is 

equal to the third binary representation of the same DNA-sequence: for example, 

101011110 ⊕ 100110011 = 001101101. One can here remind the rules of the bitwise 

modulo-2 addition: 0 ⊕ 0 = 0; 0 ⊕ 1 = 1; 1 ⊕ 0 = 1; 1 ⊕ 1 = 0. (The logic operation 

of modulo-2 addition is actively used in computer informatics and quantum 

informatics).  

It is convenient to represent DNA-alphabets of 4 nucleotides, 16 doublets, 64 

triplets, …, 4n n-plets in a form of appropriate square tables (Fig. 1), whose rows and 

columns are enumerated by binary symbols in line with the following principle. Entries 

of each column are enumerated by binary indicators "pyrimidine or purine" (C = T = 0, 

A = G = 1);  for example, the triplet CAG and all other triplets in the same column are 

the combinations “pyrimidine-purine-purine” and so this column is correspondingly 

enumerated 011. By contrast, entries of each row are numerated by binary indicators 



        

 

 

"amino or keto" (C = A = 0, T = G = 1); for example, the same triplet CAG and all other 

triplets in the same row are the combination “amino-amino-keto” and so this row is 

correspondingly numerated 001. In such alphabetic tables (Fig. 1), each of 4 letters, 16 

doublets, 64 triplets, … takes automatically its own individual place and all components 

of these alphabets are arranged in a strict order. This strict ordering of the relative 

positions of all members of the DNA alphabets proves useful in revealing hidden 

regularities and rules in the genetic coding system. As it is known, these three separate 

genetic tables (Fig. 1) form the joint tensor family of matrices [C, A; T, G](n), where 

the symbol (n) refers to tensor power n, since they are interrelated by the known 

operation of the tensor (or Kronecker) product of matrices [Petoukhov, 2008].  

 

 0 1    00 01 10 11 

0 

 

 

 

 

 

 

 

C 

00 

 

A   00 CC CA AC AA 

1 T G   01 CT CG AT AG 

     10 TC TA GC GA 

     11 TT TG GT GG 

 

 

 

Fig. 1.  The square tables of DNA-alphabets of 4 nucleotides, 16 doublets and 64 triplets 

with a strict arrangement of all components. Each of the tables is automatically 

constructed in line with the principle of binary numberings of its columns and rows 

based on molecular binary oppositions of the nucleobases  (see explanations in the text). 

 

One can see in Fig. 1, that all complementary n-plets are located inverse-

symmetrically with respect to the center of the appropriate matrix. Correspondingly, 

the 2n-bit binary numbering of each n-plet is transformed into 2n-bit numbering of its 

complementary n-plet (that is, n-plet of the opposite strand of DNA) by the mutual 

 000 001 010 011 100 101 110 111 

000 CCC CCA CAC CAA ACC ACA AAC AAA 
 000000 000001 000010 000011 000100 000101 000110 000111 

001 CCT CCG CAT CAG ACT ACG AAT AAG 

 001000 001001 001010 001011 001100 001101 001110 001111 

010 CTC CTA CGC CGA ATC ATA AGC AGA 

 010000 010001 010010 010011 010100 010101 010110 010111 

011 CTT CTG CGT CGG ATT ATG AGT AGG 

 011000 011001 011010 011011 011100 011101 011110 011111 

100 TCC TCA TAC TAA GCC GCA GAC GAA 
 100000 100001 100010 100011 100100 100101 100110 100111 

101 TCT TCG TAT TAG GCT GCG GAT GAG 

 101000 101001 101010 101011 101100 101101 101110 101111 

110 TTC TTA TGC TGA GTC GTA GGC GGA 

 110000 110001 110010 110011 110100 110101 110110 110111 

111 TTT TTG TGT TGG GTT GTG GGT GGG 

 111000 111001 111010 111011 111100 111101 111110 111111 



        

 

 

interchanging of digits 0↔1 in it. For example, by this complementary operation, the 

numbering 001010 of the triplet CAT becomes the numbering 110101 of its 

complementary triplet GTA. This interchanging 0↔1 is called the complementary 

operation and is actively used below in the theme of a realization of the ancient principle 

“like begets like” in matrix genetics. 

The presentation of ensembles of elements of the genetic coding system in the 

form of tensor families of genetic matrices has appeared as a useful tool to investigate 

structures of the genetic code from the viewpoint of their analogy with the theory of 

discrete signals processing, noise-immunity coding, quantum informatics, etc. The 

scientific direction, which deals with such matrix presentation of the ensembles of 

genetic elements and their numeric parameters, is named “matrix genetics’ [Petoukhov, 

2008; Petoukhov, He, 2010].  

 

3.  Complementary-replicated genetic matrices and the even-odd columns   

     decomposition of the matrix of 64 triplets 

 

As one can see from Fig. 1, binary numberings of columns and rows of the (2n*2n)-

matrices of DNA alphabets belong to dyadic groups of binary numbers. For example, 

in the (8*8)-matrix of 64 triplets, its columns and rows are numerated by 3-bit binary 

numbers forming the corresponding dyadic group (1): 

 

                                         001, 000, 011, 010, 101, 100, 111, 110                                (1) 

 

     This series (1) is a particular example of dyadic groups, in which modulo-2 addition 

serves as the group operation [Harmuth, 1989]. The distance in dyadic groups is known 

as the Hamming distance. Since the Hamming distance satisfies the conditions of a 

metric group, the dyadic group is a metric group. The modulo-2 addition of any two 

binary numbers from (1) always results in a new number from the same series. The 

number 000 serves as the unit element of this group: for example, 010 ⊕ 000 = 010. 

The reverse element for any number in this group is the number itself: for example, 010 

⊕ 010 = 000.  

 

Two binary numbers that are converted into each other under inter-replacing 

0↔1 will be called complementary. For example, in the dyadic group (1), the pairs of 

complementary numbers are the following: 000-111, 001-110, 010-101, 011-100 (in 

the decimal system, they correspond to pairs of numbers 0-7, 1-6, 2-5, 3-4). In a pair of 

complementary numbers, one of them is always even and the other is odd, that is, any 

pair of complementary numbers is the pair of even and odd numbers (or Yin and Yang 

numbers in line with ancient Chinese notions). Accordingly, any two columns (rows) 

that are enumerated by complementary binary numbers are called complementary. In 

the genetic matrices in Fig. 1, complementary columns are located mirror-symmetrical 

in the left and right halves of the matrices, and complementary rows are located mirror-

symmetrical in the upper and lower halves.  

One should emphasize that, in the matrix in Figs. 1 and 2, any column 

enumerated by even number contains only triplets ending by pyrimidines C or T; in 

contrast, any column enumerated by odd number contains only triplets ending by 

purines A or G. The mentioned numeric inter-replacing 0↔1 in numberings of columns 

symbolizes the molecular inter-replacing: it means the transition from columns with 

triplets ending in pyrimidines to columns with triplets ending in purines and vice versa. 

Similarity to this, any row enumerated by even number contains only triplets ending by 



        

 

 

amino-molecules A or C; in contrast, any row enumerates by odd number contains only 

triplets ending by keto-molecules G or T. The mentioned numeric inter-replacing 0↔1 

in numberings of rows symbolizes the molecular inter-replacing: it means the transition 

from rows with triplets ending in amino-molecules to rows with triplets ending in keto-

molecules and vice versa. 

Let us remind one more phenomenological symmetry connected with the known 

binary-oppositional separation of the DNA alphabet of 64 triplets - according to their 

code properties - into two equal sub-alphabets: 32 triplets with strong roots (i.e. triplets 

starting with 8 strong duplets CC, CT, CG, AC, TC, GC, GT, GG) and 32 triplets with 

weak roots (i.e. triplets starting with other 8 duplets) [Rumer, 1968; Fimmel, 

Strüngmann, 2016]. Coding value of triplets with strong roots is independent of a letter 

on their third position. For example, the four triplets with the same strong root CGC, 

CGA, CGT, CGC encode the same amino acid Arg, though they have different letters 

on their third position. By contrary, the coding value of triplets with weak roots depends 

on a letter on their third position. For example, in the grouping of the four triplets with 

the same weak root CAC, CAT, CAA, and CAG, two triplets (CAC, CAT) encode the 

amino acid His and the other two (CAA, CAG) encode another amino acid Gln. In Fig. 

2, which repeats Fig. 1 in some detail, all triplets with strong roots are marked by black 

color in contrast to triplets with weak roots denoted by white color. 

 

 

 

Fig. 2.  Black-and-white mosaics of the matrix [C, A; T, G](3) of 64 triplets from the 

tensor family [C,A; T,G](n) (from Fig. 1) show the binary-oppositional separations of 

the alphabet of 64 triplets into the sub-alphabet of 32 triplets with strong roots (denoted 

by black) and the sub-alphabets of n-plets with weak roots. At the right of the matrix, 

Rademacher functions illustrate meander-like mosaics of its rows. 

 

 

In the matrix in Fig. 2, a sequence of black and white cells in each row has a 

meander-like character: black fragments and white fragments have identical length. 

Such mosaic of each row corresponds to a meander-like form of one of Rademacher 

functions that take only two values «+1» and «-1» and whose examples are shown in 

Fig. 2. Rademacher functions are connected with the theory of orthogonal series and 

theory of probabilities. For example, every statement about the Rademacher functions 

can be interpreted from the point of view of the theory of probability (see details in 

[Alexits, 1961, §7; Petoukhov, 2021b]).  

Black and white cells of the symbolic matrices in Fig. 2 reflect the binary 

opposition of triplets with strong and weak roots and therefore can be represented by 

elements +1 and -1 in them. In this representation, a numeric matrix appears (Fig. 3, at 

top). Since this numerical matrix is closely related to the Rademacher functions, it is 

conventionally called Rademacher genetic matrix of 64 triplets. Does this Rademacher 

genetic matrix have any essential algebraic meaning? Yes, it has. Let us show this. 



        

 

 

This Rademacher genetic matrix is a sum of two sparse matrices shown in Fig. 

3 at bottom. One of these sparse matrices, called as an even-columns matrix, contains 

only columns with even numberings; the second sparse matrix, called as an odd-

columns matrix, contains only columns with odd numberings. 

 

 000 

(0) 

001 

(1) 

010 

(2) 

011 

(3) 

100 

(4) 

101 

(5) 

110 

(6) 

111 

(7) 

 

000 

(0) 

+1 +1 -1 -1 +1 +1 -1 -1  

001 

(1) 

+1 +1 -1 -1 +1 +1 -1 -1  

010 

(2) 

+1 +1 +1 +1 -1 -1 -1 -1  

011 

(3) 

+1 +1 +1 +1 -1 -1 -1 -1 = 

100 

(4) 

+1 +1 -1 -1 +1 +1 -1 -1  

101 

(5) 

+1 +1 -1 -1 +1 +1 -1 -1  

110 

(6) 

-1 -1 -1 -1 +1 +1 +1 +1  

111 

(7) 

-1 -1 -1 -1 +1 +1 +1 +1  

 

 
 (0) (1) (2) (3) (4) (5) (6) (7)   (0) (1) (2) (3) (4) (5) (6) (7) 

(0) +1  -1  +1  -1   (0)  +1  -1  +1  -1 

(1) +1  -1  +1  -1   (1)  +1  -1  +1  -1 

(2) +1  +1  -1  -1   (2)  +1  +1  -1  -1 

(3) +1  +1  -1  -1  + (3)  +1  +1  -1  -1 

(4) +1  -1  +1  -1   (4)  +1  -1  +1  -1 

(5) +1  -1  +1  -1   (5)  +1  -1  +1  -1 

(6) -1  -1  +1  +1   (6)  -1  -1  +1  +1 

(7) -1  -1  +1  +1   (7)  -1  -1  +1  +1 

 

Fig. 3. The even-odd representation of the Rademacher genetic matrix of 64 triplets 

(from Fig. 2) as the sum of two sparse complementary matrices: at left, the even-

columns matrix containing only non-zero columns having even numberings; at right, 

the odd-columns matrix containing only non-zero columns having odd numberings. 

Empty cells contain zero entries. Numbers in brackets are decimal values of binary 

numberings of columns and rows. 

 

The even-columns (8*8)-matrix in Fig. 3 is the sum of 4 sparse (8*8)-matrices 

s0+s1+s2+s3 shown in Fig. 4  (such decomposition is conditionally called the column 

dyadic-tensor-shift decomposition since it is associated with the well-known dyad-shift 

decomposition of matrices  [Ahmed, Rao, 1975], which has undergone a certain 

complication based on the tensor product). The set of these 4 matrices s0, s1, s2, s3 is 

closed relative to multiplication and corresponds to a certain multiplication table in Fig. 

4, at right. This table matches to the multiplication table of the 4-dimensional algebra 

of Cockle split-quaternions [https://en.wikipedia.org/wiki/Split-quaternion], which is 

used in the Poincare conformal disk model of hyperbolic geometry [Karzel, Kist, 1985]. 

Some connections of hyperbolic geometry with structural peculiarities of inherited 

physiological systems were described in [Bodnar, 1992, 1994; Kienle, 1964; 

Petoukhov, 1989; Smolyaninov, 2000]. 

https://en.wikipedia.org/wiki/Split-quaternion


        

 

 

 

 

Fig. 4. The column dyadic-tensor-shift decomposition of the even-columns matrix 

(from Fig. 3 at left) into 4 sparse matrices s0, s1, s2, s3, whose set is closed relative to 

multiplication; s0 plays a role of the identity matrix in this set. The multiplication table 

for this set is shown at right, which matches with the multiplication table of the 4-

dimensional algebra of Cockle split-quaternions used in the Poincare conformal disk 

model of hyperbolic geometry. The symbol of this model is presented.  

 

Analogically, the odd-columns matrix (Fig. 3, at right) is the sum of 4 sparse 

matrices p0+p1+p2+p3 shown in Fig. 5. The set of these 4 matrices p0, p1, p2, p3 is closed 

regarding multiplication and defines the multiplication table in Fig. 5, at right. This 

multiplication table coincides with the multiplication table of the 4-dimensional 

algebra, which was received above for the even-columns matrix (Fig. 4). Both the even-

columns matrix and the odd-columns matrix present Cockle’s split-quaternions with 

unit coordinates (these split-quaternions have different forms of their matrix 

representations, with which these even-columns and odd-columns genetic matrices turn 

out to be associated). Correspondingly, both these genetic matrices are connected with 

the Poincare conformal disk model of hyperbolic geometry. 

 
p0 = 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 
 

p1 = 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 
 

p2 = 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 
 

p3 = 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 
 

* p0 p1 p2 p3 

p0 p0 p1 p2 p3 

p1 p1 -p0 p3 -p2 

p2 p2 -p3 p0 -p1 

p3 p3 p2 p1 p0 

 

 

Fig.  5. The column dyadic-tensor-shift decomposition of the odd-columns matrix 

(from Fig. 3, at left) into 4 sparse matrices p0, p1, p2, p3, whose set is closed relative to 

multiplication; p0 plays a role of the identity matrix inside this set. The multiplication 

table for this set is shown, which matches the multiplication table of the Cockle split-

quaternions algebra used in the Poincare conformal disk model of hyperbolic geometry. 

The symbol of this model is presented.  

 

Now let us show that the summation of the even-columns and odd-columns 

matrices, which are complementary to each other and connected with the 4-dimensional 

algebra, gives the combined matrix W as a new algebraic entity, which is connected 



        

 

 

already with the 8-dimensional algebra. This combined matrix (Figs. 3 and 5) - under 

its column dyadic-tensor-shift decomposition – is the sum of 8 sparse matrices 

v0+v1+v2+v3+v4+v5+v6+v7 shown in Fig. 6. The set of these matrices v0, v1, v2, v3, v4, 

v5, v6, v7 is closed relative to multiplication and matches to the multiplication table (Fig. 

6, at the bottom) of a certain 8-dimensional algebra. This algebra has interesting 

properties, which were described in previous publications without a connection with 

the presented topic of complementary replications [Petoukhov, 2008a-c; Petoukhov, 

He, 2010]. 

 

v0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 1 0 
 

v1 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 
 

v2 

0 0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 
 

v3 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 
 

 

v4 

0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 0 
 

 

v5 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 
 

 

v6 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 -1 0 0 0 

0 0 0 0 -1 0 0 0 

0 0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 
 

 

v7 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 
 

 

* v0 v1 v2 v3 v4 v5 v6 v7 

v0 v0 v1 v2 v3 v4 v5 v6 v7 

v1 v0 v1 v2 v3 v4 v5 v6 v7 

v2 v2 v3 -v0 -v1 -v6 -v7 v4 v5 

v3 v2 v3 -v0 -v1 -v6 -v7 v4 v5 

v4 v4 v5 v6 v7 v0 v1 v2 v3 

v5 v4 v5 v6 v7 v0 v1 v2 v3 

v6 v6 v7 -v4 -v5 -v2 -v3 v0 v1 

v7 v6 v7 -v4 -v5 -v2 -v3 v0 v1 

 

Fig. 6 . The column dyadic-tensor-shift decomposition of the sum of the even-columns 

matrix and the odd-columns matrix (this summary matrix is shown in Fig. 3) into 8 

sparse matrices v0, v1, v2, v3, v4, v5, v6, v7, whose set is closed relative to multiplication. 

The multiplication table for this set is shown at bottom. 

 



        

 

 

This summary matrix W generates algorithmically its complementary-

replicated analogue WR by means of the interchange of numbers 0↔1 in the binary 

numerating of its columns with the corresponding rearrangement of the columns (that 

is, rearrangements of columns located mirror symmetrically in the left and right halves 

of the matrix). This interchanging algorithm 0↔1 in binary numbers provides 

interchange in any pair of complementary columns that differ from each other in the 

content of triplets with purine and pyrimidine endings, in some analogy with the 

complementarity of purines and pyrimidines in DNA double strands. For example, the 

column with number 110 (which corresponds to the nucleotide order "purine-purine-

pyrimidine" in all its triplets) takes the place of the column with number 001 (which 

corresponds to the order "pyrimidine-pyrimidine-purine" in all its triplets). Fig. 7 shows 

the summary matrix W and its complementary-replicated analogue WR, which is 

generated by this algorithm based on binary-oppositions in the DNA nucleobases 

alphabet and which is also connected by its meander like mosaic with meander-like 

Rademacher functions. 

 

 
 

Fig. 7. The Rademacher genetic matrix W of 64 triplets (from Fig. 3, at top) and its 

complementary-replicated matrix WR, which are transformed each to other by the 

interchanging algorithm based on binary-oppositions in the DNA nucleobases alphabet 

(the purine-pyrimidine transformation, see explanations in the text). Black cells 

containing entries +1 correspond to locations of triplets with strong roots. The 

numbering of columns and rows is shown in the decimal system. 

 

Applying this complementary-replicating algorithm to the complementary-

replicated matrix WR generates the original Rademacher matrix W, that is, matrices W 

and WR is mutual complementary-replicated matrices resembling two complementary 

strings of DNA. This algorithm is recursive and its applying allows generating such 

pairs of complementary-replicated matrices again and again. So, the ancient notions 

that "like begets like" surprisingly turn out to be realized in genetics not only for 

complementary strings of DNA but also for the phenomenological structure of the 

genetic matrix presented properties of the alphabet of 64 triplets. In other words, 

molecular complementary-replicated properties of DNA strings exist jointly with 

algebraic complementary-replicated properties of the considered alphabetical matrices 

of the genetic code. Both of these properties are parts of genetics of the whole 

organisms and so interrelated. These algebraic complementary-replicated properties of 

genetic matrices allow applying effective algebraic methods for further study of 



        

 

 

genetics to include it in the field of modern mathematical natural sciences in connection 

with multi-dimensional algebras, hyperbolic geometry, theory of resonances, etc.  

The complementary-replicated matrix WR – under its column dyadic-tensor-

shift decomposition – is the sum of 8 sparse matrices q0+q1+q2+q3+q4+q5+q6+q7 shown 

in Fig. 8. The set of these matrices q0, q1, q2, q3, q4, q5, q6, q7 is closed relative to 

multiplication and matches to the multiplication table (Fig. 8, at bottom) of a certain 8-

dimensional algebra. This new multiplication table is a complementary analogue of the 

multiplication table shown for the similar decompositions of the matrix W in Fig. 6 : in 

these multiplication tables, each value of the multiplication qi*qk is equal to the value 

vi*vk but taking with an opposite sign (here indexes i, k = 0, 1, 2, 3, 4, 5, 6, 7). 

 

q0 

-1 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

0 0 0 0 -1 0 0 0 

0 0 0 0 -1 0 0 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 
 

q1 

0 -1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 -1 
 

q2 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 1 0 

0 0 0 0 -1 0 0 0 

0 0 0 0 -1 0 0 0 
 

q3 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 -1 0 0 
 

 

q4 

0 0 0 0 -1 0 0 0 

0 0 0 0 -1 0 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 1 0 

-1 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 
 

 

q5 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 

0 -1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 
 

 

q6 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 1 0 

0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 
 

 

q7 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 
 

 

* q0 q1 q2 q3 q4 q5 q6 q7 

q0 -q0 -q1 -q2 -q3 -q4 -q5 -q6 -q7 

q1 -q0 -q1 -q2 -q3 -q4 -q5 -q6 -q7 

q2 -q2 -q3 q0 q1 q6 q7 -q4 -q5 

q3 -q2 -q3 q0 q1 q6 q7 -q4 -q5 

q4 -q4 -q5 -q6 -q7 -q0 -q1 -q2 -q3 

q5 -q4 -q5 -q6 -q7 -q0 -q1 -q2 -q3 

q6 -q6 -q7 q4 q5 q2 q3 -q0 -q1 

q7 -q6 -q7 q4 q5 q2 q3 -q0 -q1 

 

 



        

 

 

Fig. 8. The column dyadic-tensor-shift decomposition of the matrix WR (Fig. 7) into 8 

sparse matrices q0, q1, q2, q3, q4, q, q6, q7, whose set is closed relative to multiplication. 

The multiplication table for this set is shown at the bottom. 

 

The action of complementary-replicated (8*8)-matrices W and WR on an 

arbitrary 8-dimensional vector 𝑋 generates two new vectors that are complementary to 

each other: the corresponding coordinates of both generated vectors are the same in 

their absolute values, but have opposite signs. A numerical example of this with a 

voluntary vector 𝑋 = [1, 2, 3, 4, 5, 6, 7, 8] is shown by expression (2): 

 

     𝑋*W =  [1, 2, 3, 4, 5, 6, 7, 8]*W  =  [6,  6,  -22,  -22,  22,  22, -6, -6] =  𝑌̅ 

     𝑋*WR = [1, 2, 3, 4, 5, 6, 7, 8]*WR = [-6,  -6,  22,  22, -22, -22,  6,  6] = -𝑌̅         (2)      

 

     Another interesting property of the Rademacher genetic complementary-replicated 

matrices W and WR is that - by their repeated action on the emerging vectors (2) - one 

can generate as many complementary-replicated vectors as desired. In this case, the 

quadrupling of coordinate values in the vectors occurs, reminiscent of the quadrupling 

of genetic information during the meiosis division of germ cells, under which one cell 

generates 4 similar cells with a complete set of DNAs in each. The following example 

(3), using the denotations from (2), illustrates this quadrupling of coordinate values 

with a regular changing of signs “+” and “–“: 

 

       𝑌̅*WR = -4*𝑌̅;   𝑌̅*WR
2 = 42*𝑌̅;   𝑌̅*WR

3 = -43*𝑌̅;   𝑌̅*WR
4 = 44*𝑌̅;  etc.            (3) 

 

The expression (4) shows one more property of the Rademacher 

complementary-replicated matrices W and WR: 

 

                                                 W*WR = WR*W = -4WR                                             (4) 

 

The matrix W/4 is an oblique projector since (W/4)2 = W/4. In contrast, the 

matrix WR corresponds to another condition: (WR/4)2 = -WR/4. 

Each of the resulting vectors 𝑋*W and 𝑋*WR is always a complementary 

palindrome: the sequence of its coordinates, which is read in forward order, coincides 

with the sequence, which is read in reverse order and has coordinates with the opposite 

sign (see the example (2)). This algebraic feature of the action of complementary-

replicated matrices on voluntary vectors is interesting, since in molecular genetics the 

problem of complementary palindromes has long been known. Here one should remind 

about the difference in notions of an ordinary palindrome and a complementary 

palindrome. By definition, an ordinary palindrome is a string that reads the same from 

beginning and from the end. By contrast, a complementary palindrome in molecular 

genetics is a fragment of a chain of DNA or RNA, which becomes an ordinary 

palindrome, if each symbol in one half of the fragment is replaced by its complementary 

symbol (A↔ T, C↔G) [Gusfield,1997]. For instance, AGCTCGCGAGCT is a 

complementary palindrme. In nucleotide sequences of DNA and RNA, a great number 

of complementary palindromes and ordinary palindromes exists [Gusfield, 1997; 

Lehninger, 1982]. For instance, families of repetitive sequences occupy about one-third 

of the human genome. The importance of the problem of repeats in genetic sequences 

is reflected in the fact that during 20 years before 1991 on this subject was published 

6000 articles [Gribskov, Devereux, 1991].  



        

 

 

 One should add that the theme of the complementary columns (and rows) in the 

described genetic matrices is also essential in connection with the universal rules of 

stochastic organization of DNA in genomes of higher and lower organisms [Petoukhov, 

2022a,b]. These rules include approximate equalities of sums of probabilities of triplets 

belonging to the even column and the odd column of each pair of complementary 

columns (the same is true for each pair of complementary rows). 

 

4.  Complementary-replicated genetic matrices and the even-odd rows  

     decomposition of the matrix of 64 triplets 

 

Let us show that similar algebraic results arise in the case of “the rows dyadic-tensor-

shift decomposition” of the same mosaic matrix of 64 triplets from Fig. 3. This matrix 

has pairs of complementary rows, which are located mirror-symmetrical in its top and 

bottom halves; as it was noted above, each of such pair contains one row with even 

number and one row with odd number. Fig. 9 shows that the numeric presentation of 

this matrix, containing entries +1 and -1 (whose locations correspond to triplets with 

strong and weak roots), is the sum of two sparse matrices, one of which contains only 

non-zero rows enumerated by even numbers and the other contains only non-zero rows 

enumerated by odd numbers. Each of the pairs of complementary rows is separated 

among these two matrices. Correspondingly, the sparse matrix with even-numerated 

rows is conditionally called the even-rows matrix of the row type; all its non-zero rows 

correspond to triplets, which contain amino-molecules A or C at their ends (by this 

reason, this sparse matrix can be also called the amino-rows matrix). The sparse matrix 

with odd-numerated rows is called the odd-rows matrix; all its non-zero rows 

correspond to triplets, which contain keto-molecules G or T at their ends (by this reason, 

this sparse matrix can be also called the keto-rows matrix). 

 

 000 

(0) 

001 

(1) 

010 

(2) 

011 

(3) 

100 

(4) 

101 

(5) 

110 

(6) 

111 

(7) 

 

000 

(0) 

+1 +1 -1 -1 +1 +1 -1 -1  

001 

(1) 

+1 +1 -1 -1 +1 +1 -1 -1  

010 

(2) 

+1 +1 +1 +1 -1 -1 -1 -1  

011 

(3) 

+1 +1 +1 +1 -1 -1 -1 -1 = 

100 

(4) 

+1 +1 -1 -1 +1 +1 -1 -1  

101 

(5) 

+1 +1 -1 -1 +1 +1 -1 -1  

110 

(6) 

-1 -1 -1 -1 +1 +1 +1 +1  

111 

(7) 

-1 -1 -1 -1 +1 +1 +1 +1  

 
 (0) (1) (2) (3) (4) (5) (6) (7)   (0) (1) (2) (3) (4) (5) (6) (7) 

(0) +1 +1 -1 -1 +1 +1 -1 -1  (0)         

(1)          (1) +1 +1 -1 -1 +1 +1 -1 -1 

(2) +1 +1 +1 +1 -1 -1 -1 -1  (2)         

(3)         + (3) +1 +1 +1 +1 -1 -1 -1 -1 

(4) +1 +1 -1 -1 +1 +1 -1 -1  (4)         

(5)          (5) +1 +1 -1 -1 +1 +1 -1 -1 

(6) -1 -1 -1 -1 +1 +1 +1 +1  (6)         



        

 

 
(7)          (7) -1 -1 -1 -1 +1 +1 +1 +1 

 

Fig.  9. The even-odd presentation of the mosaic matrix of 64 triplets (from Fig. 3) as 

the sum of two sparse complementary matrices: the left matrix, called the even-rows 

matrix, contains only non-zero rows having even numberings; the matrix at right, called 

the odd-rows matrix, contains only non-zero rows having odd numberings. Empty cells 

contain zero entries. Numbers in brackets are decimal values of binary numberings of 

columns and rows. 

 

The even-rows (8*8)-matrix in Fig. 9 is the sum of 4 sparse (8*8)-matrices 

u0+u1+u2+u3 shown in Fig. 10. The set of these 4 matrices u0, u1,u2, u3 is closed relative 

to multiplication and corresponds to a certain multiplication table in Fig. 10  at right. 

This table is again the multiplication table of the 4-dimensional algebra of Cockle split-

quaternions, which we met above in Figs. 4, 5 and which is used in the Poincare 

conformal disk model of hyperbolic geometry. 

 

 
 

Fig. 10. The row dyadic-tensor-shift decomposition of the even-row matrix (from Fig. 

9, at left) into 4 sparse matrices u0, u1, u2, u3, whose set is closed relative to 

multiplication; u0 plays a role of the identity matrix in this set. The multiplication table 

for this set is shown at right, which matches with the multiplication table of the 4-

dimensional algebra of Cockle split-quaternions used in the Poincare conformal disk 

model of hyperbolic geometry. The symbol of this model is presented.  
  

       Analogically, the odd-rows matrix (Fig. 9, at right) is the sum of 4 sparse matrices 

a0+a1+a2+a3 shown in Fig. 11. The set of these 4 matrices a0, a1, a2, a3 is closed regarding 

multiplication and defines the multiplication table in Fig. 11, at right. This 

multiplication table coincides with the multiplication table of the 4-dimensional 

algebra, which was received above for the even-rows matrix (Fig. 10) and for even-

columns and odd-columns matrices (Figs. 4 and 5). Both the even-rows matrix and the 

odd-rows matrix represent Cockle’s split-quaternions with unit coordinates, which are 

connected with the Poincare conformal disk model of hyperbolic geometry. 



        

 

 

 
 

Fig. 11. The row dyadic-tensor-shift decomposition of the even-row matrix (from Fig. 

9, at right) into 4 sparse matrices a0, a1, a2, a3, whose set is closed relative to 

multiplication; a0 plays a role of the identity matrix in this set. The multiplication table 

for this set is shown at right, which matches with the multiplication table of the                

4-dimensional algebra of Cockle split-quaternions used in the Poincare conformal disk 

model of hyperbolic geometry. The symbol of this model is presented.  

 
 

 The sum of the even-rows matrix and the odd-rows matrix gives the genetic 

matrix W in Fig. 3 at top, which was above analyzed jointly with its complementary-

replicated analogue WR (Figs. 6-8).  
 Similar approaches using even-odd structures and dyadic-tensor-shift 

decompositions are also appropriate to analyze complementary replicated properties of 

Rademacher genetic matrices of higher orders, for example, the (16*16)-matrix of 256 

tetraplets. 

Different forms of implementation of the fundamental biological principle “like 

begets like” (or a complementary replication in a wide sense) can be seen at different 

levels of inherited biological organization. For example, in the brain of humans and 

animals, which has mirror complementary hemispheres (left and right), mirror neurons 

are known. A mirror neuron is a neuron that fires both when an animal acts and when 

the animal observes the same action performed by another. Thus, the neuron "mirrors" 

the behavior of the other, as though the observer were itself acting. 

The theme of mirror neurons, whose functioning is based on one of the forms 

of the principle “like begets like”, provokes wide scientific researches and debates since 

it concerns cognitive functions, an origin of language, learning facilitation, automatic 

imitation, motor mimicry, autism, human capacity of emotions such as empathy, and 

many other problems (see for example [Morsella, Bargh, Gollwitzer, 2009; Rizzolatti, 

Sinigaglia, 2008]). In 2014, Philosophical Transactions of the Royal Society B 

published a special issue entirely devoted to mirror neuron research [Ferrari, Rizzolatti, 

2014]. One of the arisen questions is the following: where do mirror neurons come 

from? [Heyes, 2010].  

The above-described results of our studies in the field of matrix genetics give 

pieces of evidence that the system of mirror neurons and the system of DNAs 

complementary replication are not isolated parts of the organism, but they are particular 

parts of a bio-algebraic complex realizing inherited phenomena “like begets like”.  

Other examples of manifestation of this complex are, for example, structured DNA 

alphabets in their matrix representation forms, as well as universal rules for even-odd 

stochastic organization of genomic DNAs of higher and lower organisms [Petoukhov, 



        

 

 

2022a,b]. Our body structure with its left and right halves, having left-and-right 

sensory-motor systems, also can be considered as one of the manifestations of this 

complementary-replicating complex. Another example is given by our visual 

perception whose optical system of the eye provides the transmission of the external 

image to the retina in complementary inverted and reduced forms. Although the image 

on the retina is inverted, we can see objects in a direct form by some complementary-

replicating action of our brain. 

Correspondingly, complementary replication is a systemic phenomenon in the 

genetic organization. It's not that the molecules of two strands of DNA randomly 

docked, formed a complementary pair and began to repeat the process of 

complementary replication at breakneck speed. Another point of view is proposed: the 

DNA filaments replication phenomenon is a part of a holistic bio-algebraic genetic 

complex of complementary replication, parts of which manifest themselves at different 

levels of organization of the living, up to the functioning of the brain with its mirror 

neurons and the ability to empathize and imitate external events. This bio-algebraic 

complex can be considered as responsible for the implementation of the ancient 

principle "like begets like" at different levels of biological organization in the course of 

biological evolution.  

 

 

5.  Complementary replications and the matrix of 64 triplets under its                      

      twice-complementary transformation 

 

This section continues research in the field of matrix genetics and phenomena of 

algebra-biological binary oppositions, aimed at demonstrating the key role of the 

principle "like begets like" and complementary replications in the genetic coding 

system including tensor families of genetic matrices. 

For this additional research, let us consider a transformation of the Rademacher 

genetic matrix of 64 triplets from Fig. 2 under the simultaneous interchange of numbers 

0↔1 in the binary numerating of its columns and rows with appropriate rearrangements 

of the columns and the rows. These rearrangements of numberings correspond to 

simultaneous molecular interchanges inside all pairs of complementary columns and 

also all pairs of complementary rows defined above by indicators of purine-pyrimidine 

endings and amino-keto endings in triplets. Fig. 12 shows a new Rademacher matrix 

B, which arises under such a twice-complementary transformation and which is 

conditionally called the twice-complementary matrix. This twice-complementary 

matrix B satisfies the following conditions: B2 = 4B, (B/2)2 = B/2, that is, the 

asymmetrical matrix B/2 is an oblique projector. The matrix B is the sum of two 

matrices: the odd-columns matrix and the even-columns matrix, which are shown in 

Fig. 12, at the bottom. 
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001 
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-1 -1 1 1 -1 -1 1 1  

000 
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 7 6 5 4 3 2 1 0    7 6 5 4 3 2 1 0 

7 1  1  -1  -1    7  1  1  -1  -1 

6 1  1  -1  -1    6  1  1  -1  -1 

5 -1  1  -1  1    5  -1  1  -1  1 

4 -1  1  -1  1   + 4  -1  1  -1  1 

3 -1  -1  1  1    3  -1  -1  1  1 

2 -1  -1  1  1    2  -1  -1  1  1 

1 -1  1  -1  1    1  -1  1  -1  1 

0 -1  1  -1  1    0  -1  1  -1  1 

 

Fig. 12. The twice-complementary matrix B (at top), which is generated by the twice-

complementary transformation from the Rademacher matrix of 64 triplets (from Fig. 

2); its black cells correspond triplets with strong roots. This matrix B is the sum of the 

odd-columns matrix BOC and the even-columns matrix BEC, whose numberings of 

columns and rows are shown in decimal notations (at the bottom). Empty cells contain 

zeros. The matrices at the bottom present numbers of columns and rows in decimal 

notation. 

 

 It turns out that the odd-columns matrix BOC is the sum of 4 new sparse 

matrices b0 + b1 + b2 + b3, whose set is closed relative to multiplication and defines a 

multiplication table of the algebra of split-quaternions of Cockle as it is shown in Fig. 

13 (compare with Figs. 4 and 5). This algebra is used in the Poincare conformal disk 

model of hyperbolic geometry. 

 

 
 

Fig. 13.  The dyadic-tensor-shift decomposition of the odd-columns matrix BOC (from 

Fig. 12, at the bottom left) into 4 sparse matrix b0, b1, b2, b3, whose set is closed relative 

to multiplication and defines a multiplication table of the algebra of split-quaternions 

of Cockle (compare with Figs. 4 and 5). This split-quaternions algebra is used in the 

Poincare conformal disk model of hyperbolic geometry whose symbol is again 

presented. 

 



        

 

 

It turns out also that the even-columns matrix BEC (from Fig. 12, at bottom 

right) is the sum of 4 new sparse matrix k0 + k1 + k2 + k3, whose set is closed relative 

to multiplication and defines a multiplication table of the algebra of split-quaternions 

of Cockle as well as it is shown in Fig. 14 (compare with the same multiplication table 

in Figs. 4, 5, and 13).  

 

 
 

Fig. 14.  The dyadic-tensor-shift decomposition of the even-columns matrix BEC (from 

Fig. 12) into 4 sparse matrix k0, k1, k2, k3, whose set is closed relative to multiplication 

and defines again a multiplication table of the algebra of split-quaternions of Cockle. 

The symbol of the Poincare conformal disk model of hyperbolic geometry is shown. 

 

 Twice-complementary matrix B (Fig. 12, at top) can be also presented as the 

sum of the odd-rows matrix BOR and the even-rows matrix BER as it is shown in Fig. 

15.  
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101 

(5) 

100 

(4) 

011 

(3) 

010 

(2) 

001 

(1) 

000 

(0) 

 

111 

(7) 

1 1 1 1 -1 -1 -1 -1  
110 

(6) 

1 1 1 1 -1 -1 -1 -1  

101 

(5) 

-1 -1 1 1 -1 -1 1 1  

100 

(4) 

-1 -1 1 1 -1 -1 1 1 = 

011 

(3) 

-1 -1 -1 -1 1 1 1 1  

010 

(2) 

-1 -1 -1 -1 1 1 1 1  

001 

(1) 

-1 -1 1 1 -1 -1 1 1  

000 

(0) 

-1 -1 1 1 -1 -1 1 1  

 

 
 

Fig. 15. The twice-complementary matrix B (at the top) is the sum of the odd-rows 

matrix BOR (at the bottom left) and the even-rows matrix BER (at the bottom right), 

whose numberings of columns and rows are shown in decimal notations (at the bottom). 



        

 

 

Empty cells contain zeros. Black cells correspond to triplets with strong roots. The 

matrices at the bottom present numbers of columns and rows in decimal notation. 

 

 

The odd-rows matrix BOR (Fig. 15) is the sum of 4 sparse matrices h0 + h1 + h2 

the + h3, whose set is closed relative to multiplication and defines a multiplication table 

of the same algebra of split-quaternions of Cockle as it is shown in Fig. 16 (compare 

with the same multiplication table in Figs. 4, 5, 13, and 14). 

 

 

Fig. 16. The dyadic-tensor-shift decomposition of the odd-rows matrix BOR (from Fig. 

15) into 4 sparse matrix h0, h1, h2, h3, whose set is closed relative to multiplication and 

defines a multiplication table of the algebra of split-quaternions of Cockle. The symbol 

of the Poincare conformal disk model of hyperbolic geometry, which is connected with 

this algebra, is shown. 

 

The even-rows matrix BER (Fig. 15) is the sum of 4 sparse matrices y0 + y1 + 

y2 + y3, whose set is closed relative to multiplication and defines a multiplication table 

of the same algebra of split-quaternions of Cockle as it is shown in Fig. 1.8.6 (compare 

with the same multiplication table in Figs. 4, 5, 13, 14, and 16). 

 

 

Fig. 17. The dyadic-tensor-shift decomposition of the even-rows matrix BER (from 

Fig. 15) into 4 sparse matrices y0, y1, y2, y3, whose set is closed relative to multiplication 

and defines a multiplication table of the algebra of split-quaternions of Cockle. The 

symbol of the Poincare conformal disk model of hyperbolic geometry, which is 

connected with this algebra, is shown. 

 

     6. Genetic matrices, root-complementarity, and hyperbolic numbers 

 

The materials of sections 4 and 5 do not at all exhaust the vast topic of the 

implementation of the principle “like begets like” in matrix genetics based on binary 

oppositions in the structure of the genetic system, including complementary 



        

 

 

replications in the regular structuring of genetic matrices. This topic should be intensive 

and systematic studied in future. Here let us show only some additional examples of 

complementary interrelations in genetic matrices (that is, matrices built on the basis of 

binary-oppositional properties of the molecular ensembles of the genetic system).  

 It turns out that introduction of an additional notion of “root-complementarity” 

is useful for understanding and modeling the non-trivial structurization of a molecular 

genetic system. By definition, two n-bit binary numbers (n = 3, 4, 5, …) form a root-

complementary pair if they transfer each into other under the interchange of numbers 

0↔1 only in their roots.  For example, such interchanging transforms number 000 into 

number 110, that is, binary numbers 000 and 110 form the root-complementary pair. 

Correspondingly, in the genetic matrices, two columns (or rows) form a root-

complementary pair if their binary numberings form a root-complementary pair. Below 

we show that this topic of the root-complementarity pairs is connected with algebra of 

2-dimensional hyperbolic (double) numbers. 

 Let us return to the even-columns matrix in Fig. 5, at bottom left. It is the sum 

of two matrices shown in Fig. 18, at bottom. The first matrix contains only two non-

zero columns, which are enumerated by root-complementary binary numbers 000 and 

110 (that is, numbers 0 and 6 in decimal notation) and is denoted C06. The second matrix 

contains only two non-zero columns, which are enumerated by root-complementary 

binary numbers 010 and 100 (that is, numbers 2 and 4 in decimal notation) and is 

denoted C24. 

 

 000 (0) 001 (1) 010(2) 011 (3) 100 (4) 101 (5) 110 (6) 111 (7)  

(0) +1  -1  +1  -1   
(1) +1  -1  +1  -1   

(2) +1  +1  -1  -1   

(3) +1  +1  -1  -1  = 

(4) +1  -1  +1  -1   

(5) +1  -1  +1  -1   

(6) -1  -1  +1  +1   

(7) -1  -1  +1  +1   

 

 0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7 

 +1      -1     -1  +1    
 +1      -1     -1  +1    

 +1      -1     +1  -1    

= +1      -1  +   +1  -1    

 +1      -1     -1  +1    

 +1      -1     -1  +1    

 -1      +1     -1  +1    

 -1      +1     -1  +1    

 

Fig. 18. The decomposition of the even-columns matrix from Fig. 1.7.1 (at the bottom 

left) into the sum of matrices C06 (at left) and C24 (at right). Empty cells contain zeros. 

The matrices at the bottom present numbers of columns in decimal notation. 

 

 

Fig. 19 shows that the first matrix C06 is decomposed into two matrices e0 and 

e1, whose set is closed relative to multiplication and defines the multiplication table of 



        

 

 

the 2-dimensional algebra of hyperbolic (or double) numbers z = x + y j, where x and y 

are real numbers, j2 = 1, and j ≠ ±1 [Kantor, Solodovnikov, 1989]. The multiplication 

table of bases elements of this algebra is shown in Fig. 19, at right. 

 

 

 

e0 = 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 1 0 
 

e1 = 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 
 

 

 

* e0 e1 

e0 e0 e1 

e1 e1 e0 
 

 

Fig. 19. The decomposition of the matrix C06 (from Fig. 18) into the sum of two 

matrices e0 + e1, whose set is closed relative to multiplication. Their multiplication table 

is shown at right. 

 

Fig. 20 shows that the second matrix C24 (from Fig. 18) is decomposed into the 

sum of two matrices g0 and g1, whose set is also closed relative to multiplication and 

defines the same multiplication table of 2-dimensional algebra of hyperbolic numbers.  

 

 

g0 = 

0 0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 
 

g1 = 

0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 -1 0 0 0 

0 0 0 0 -1 0 0 0 

0 0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 0 
 

 

 

* g0 g1 

g0 g0 g1 

g1 g1 g0 
 

 

Fig. 20. The decomposition of the matrix C24 (from Fig. 18) into the sum of two 

matrices   g0 + g1, whose set is closed relative to multiplication. Their multiplication 

table, shown at right, corresponds to algebra of hyperbolic numbers. 

 

 Now let us turn to the odd-columns matrix in Fig. 3, at bottom right. It is the 

sum of two matrices shown in Fig. 24, at bottom. The first matrix contains only two 

non-zero columns, which are numerated by root-complementary binary numbers 001 

and 111 (that is, numbers 1 and 7 in decimal notation) and is denoted K17. The second 

matrix contains only two non-zero columns, which are numerated by root-

complementary binary numbers 011 and 101 (that is, numbers 3 and 5 in decimal 

notation) and is denoted K35. 



        

 

 

 

 000 

(0) 

001 

(1) 

010 

(2) 

011 

(3) 

100 

(4) 

101 

(5) 

110 

(6) 

111 

(7) 

 

000 (0)  +1  -1  +1  -1  

001 (1)  +1  -1  +1  -1  

010 (2)  +1  +1  -1  -1  

011 (3)  +1  +1  -1  -1 = 

100 (4)  +1  -1  +1  -1  

101 (5)  +1  -1  +1  -1  

110 (6)  -1  -1  +1  +1  

111 (7)  -1  -1  +1  +1  

 

(0) (1) (2) (3) (4) (5) (6) (7)  (0) (1) (2) (3) (4) (5) (6) (7) 

 +1      -1     -1  +1   
 +1      -1     -1  +1   

 +1      -1     +1  -1   

 +1      -1 +    +1  -1   

 +1      -1     -1  +1   

 +1      -1     -1  +1   

 -1      +1     -1  +1   

 -1      +1     -1  +1   

 

Fig. 21. The decomposition of the odd-columns matrix from Fig. 3 (at bottom right) 

into the sum of matrices K17 (at left) and K35 (at right). Empty cells contain zeros. The 

matrices at the bottom present numbers of columns in decimal notation. 

 

 Fig. 22 shows that the first matrix K17 is decomposed into the sum of two 

matrices q0 and q1, whose set is closed relative to multiplication and defines the 

multiplication table of the 2-dimensional algebra of hyperbolic numbers. 

 

 q0 = 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 1 0 
 

  q1 = 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 
 

 

* q0 q1 

q0 q0 q1 

q1 q1 q0 
 

 

Fig. 22. The decomposition of the matrix K17 (from Fig. 18) into the sum of two 

matrices   q0 + q1, whose set is closed relative to multiplication. Their multiplication 

table, shown at right, corresponds to the algebra of hyperbolic numbers. 

 



        

 

 

 Fig. 23 shows that the second matrix K35 (from Fig. 21) is decomposed into the 

sum of two matrices h0 and h1, whose set is closed relative to multiplication and defines 

the same multiplication table of the 2-dimensional algebra of hyperbolic numbers. 

 

h0 = 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 
 

h1 = 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 0 
 

 

* h0 h1 

h0 h0 h1 

h1 h1 h0 
 

 

Fig. 23. The decomposition of the matrix K35 (from Fig. 21) into the sum of two 

matrices   h0 + h1, whose set is closed relative to multiplication. Their multiplication 

table, shown at right, corresponds to the algebra of hyperbolic numbers. 

 

 These results about the connection between the algebra of hyperbolic numbers 

and the root-complementary relations in the structural set of triplets are especial 

interesting if one takes into account many other data about the role of hyperbolic 

numbers in genetics [Petoukhov, 2020a,b, 2021a]. Below in this article the topic of 

hyperbolic numbers is continued in connection with new universal rules of stochastic 

organization of genomic DNAs of eukaryotes and prokaryotes. 

 

7. Universal algorithms for dichotomies of probabilities in hydrogen bond   

sequences of genomic DNAs  

 

A lot of new data on the important significance of the principle "like begets like" and 

related binary oppositions in the genetic system is found in the study of information 

sequences of genomic DNA. We will talk about the universal algorithms of dichotomies 

of probabilities discovered by the author in binary representations of these sequences.  

The results described below on universal rules of dichotomies of n-plet probabilities 

and on corresponding fractal trees of percentages in genomic DNAs have been obtained 

by the author on a significant number of DNAs of many eukaryotic and prokaryotic 

genomes, including the following: 

● all 24 human chromosomes;  

● all chromosomes of drosophila, mouse, worm, many plants;  

● 19 genomes of bacteria and archaea;  

● many extremophiles, living in extreme conditions, for example, radiation with 

a level 1000 times higher than fatal for humans. 

One can mention that these genomic DNAs were early analyzed by the author 

concerning another theme related to the hyperbolic rules of amounts of nucleotide n-

plets in genomic DNAs [Petoukhov, 2020c]. This article illustrates these general results 

and rules with examples of percentage data related to DNAs of human chromosome 

№1, the plant Arabidopsis thaliana, and bacteria Bradyrhizobium japonicum. 

  



        

 

 

Let's start the presentation of the obtained results with the analysis of the 

hydrogen bond sequence (or briefly H-sequence) in DNA of human chromosome №1. 

This DNA contains about 250 million of nucleotides A, T, C, and G and 

correspondingly the same amount of the complementary hydrogen bonds 2 and 3 (initial 

data on this chromosome were taken from the GenBank: 

https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11 ).  

In the author’s approach, the H-sequence of this chromosomal DNA is firstly 

presented as a H-monoplets sequence where percentages %2 and %3 of each of 2 

possible kinds of members (that is, digits 2 and 3) are computer calculated. 

 Secondly, the H-sequence of this DNA is presented as a H-duplets sequence 

where percentages %22, %23, %32, and %33 of each of 4 possible kinds of H-duplets 

(that is, 22, 23, 32, and 33) are computer calculated. 

 Thirdly, the H-sequence of this DNA is presented as a H-triplets sequence 

where percentages %222, %223, %232, %233, %322, %323, %332, %333 of each of 8 

possible kinds of H-triplets are computer calculated. 

 Fourth, the H-sequence of this DNA is presented as a H-tetraplets sequence 

where percentages %2222, %2223, ….., %3333 of each of 16 possible kinds of H-

tetraplets are computer calculated. 

Fifth, the H-sequence of this DNA is presented as a H-pentaplets sequence 

where percentages %22222, %22223, …., %33333 of each of 32 kinds of H-pentaplets 

are computer calculated. 

 Results of these calculations are presented in Table 1. This author's method of 

analysis of percent contents in binary sequences represented as multi-layer sets of n-

plets is called "the method of hierarchy binary stochastics" (or, briefly, the HBS-

method). The percentage values here and below are given in fractions of a unit. 

 

Table 1. Phenomenological percent values of each of the H-n-plets in 

corresponding H-n-plets representations of the DNA of human chromosome № 1 (n = 

1, 2, 3, 4, 5). Its H-sequence contains about 250 million digits 2 and 3. Initial data on 

this chromosome were taken from the GenBank: 

https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11. Even H-n-plets starting with 

an even number 2 are in red, and odd H-n-plets starting with an odd number 3 are in 

blue. 

 

Alphabet of H-monoplets 

having 2 members (2, 3) 

Alphabet of H-duplets having 4 members 

(22, 23, 32, 33) 

%2 %3 %22 %23 %32 %33 

0,582757 0,417243 0,328129 0,254635 0,254622 0,162614 

 

Alphabet of H-triplets having 8 members: 222, 223, 232, 233, 322, 323, 332, 333 

%222 %223 %232 %233 %322 %323 %332 %333 
0,200289 0,127765 0,155746 0,098982 0,127812 0,126809 0,098968 0,063630 

 

 

https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11
https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11


        

 

 

 
 

 
 

 

At first glance, these sets of phenomenological percentages of different H-n-

plets, which differ in the number of members in the sets and in the size of individual 

members, are not related to each other. But all these different sets of percentages (or 

probabilities) of H-n-plets are unexpectedly closely and algorithmically interconnected 

each with other as any reader can check by using the phenomenological data in Table 

1. Below these revealed interconnections are presented in detail. This article shows 

these regular numeric interconnections by separate examples of analysis of DNAs in 

the human chromosome № 1, the genome of the plant Arabidopsis thaliana, and the 

bacteria Bradyrhizobium japonicum. 

  

- 7.1. Suffix dichotomies of percentages of H-n-plets in DNA of human 

chromosome № 1.  

 

Analysis of the phenomenological data in Table 1 reveals the following: the percentage 

of any H-n-plet is practically equal to the sum of percentages of those two H-(n+1)-

plets, which are generated from this H-n-plet by addition to it the suffixes 2 and 3 as 

Fig. 24 illustrates. We call this type of dichotomy a suffix dichotomy.  

      %2 ≈ 

                

 

%22 + %23 

      %22 ≈ 

                

 

%222 + %223 

 

… 

      %Hn ≈ 

                

 

%Hn2 + %Hn3 

 
0,58276=%2 ≈ %22+%23=0,58276 

0,3281=%22 ≈ %222+%223=0,3281 

0,2546=%23 ≈ %232+%233=0,2547 

 0,2003=%222 ≈ %2222+%2223=0,2003 

0,41724=%3 ≈ %32+%33=0,41724 

0,25462=%32 ≈ %322+%323=0,25462 

0,1626=%33 ≈ %332+%333=0,1626 

  0,06363=%333 ≈ %3332+%3333=0,06364 

 



        

 

 

Fig. 24. At the top: the illustration of the general algorithm of the suffix dichotomy in 

interrelations between percentages of H-n-plets and H-(n+1)-plets in a genomic binary 

sequence of hydrogen bonds, which is analyzed by the HBS-method. Here the symbol 

%Hn denotes a percentage of any H-n-plet under studying (values n = 1, 2, 3, 4, 5 were 

studied). At the bottom: for the case of DNA of the human chromosome №1, a few 

numeric examples are shown of high-precision equalities between a percentage of any 

H-n-plet and a sum of the percentages of two H-(n+1)-plets, which are generated from 

it by the addition of suffixes 2 and 3. Added suffixes 2 and 3 are highlighted by green. 

Rounded values of percentages of the H-n-plets are taken from Table 1. 

 

 In phenomenological equalities of this type (Fig. 24), based on the suffix 

dichotomy of percentages of H-n-plets, their high accuracy is impressive - up to several 

decimal places. Fig. 24 represents only a few examples of high-precision equality of 

the percentages. Using numeric data from Table 1, any reader can check himself that 

such equalities of percentage dichotomies also hold with similar high precisions for all 

other possible variants of the noted percentages dichotomy, for example,  

%223≈%2232+%2233, %232 ≈ %2322+%2323, %3332 ≈ %33322+%33323, etc. The 

author has systematically checked these percentage dichotomic equalities in many 

genomic DNAs, listed below, only for n = 1, 2, 3, 4, 5. He also selectively checked the 

fulfillment of such equalities for higher values of n getting positive results in every 

case, but he did not check at what values of n these dichotomic percentage equalities 

cease to hold. 

 

 The rule of the suffix dichotomy of H-n-plets percentages leads to fractal 

dichotomous trees of H-n-plets percentages, which is shown in Fig. 25 for the case of 

DNA of human chromosome № 1. H-n-plets starting with even digit 2 are conditionally 

called even H-n-plets (their percentages are marked by pink in Fig. 25 and further), and 

H-n-plets starting with odd digit 3 are called odd H-n-plets (their percentage are marked 

by blue in Fig. 25 and further). Each of the levels of these fractal trees with percentage 

values of even and odd H-n-plets corresponds to a certain magnitude of n.  

 

 
  

  
 

Fig. 25. At the top: the beginning of the fractal dichotomic percentage trees of H-n-

plets, which is based on the algorithm of the suffix dichotomy of percentages of H-n-



        

 

 

plets when passing from the H-n-plet representation of the H-sequence to its H-(n+1)-

representation. The case of DNA of human chromosome № 1 is presented. Rounded 

numeric data of percentages are taken from Table 1. The left and the right columns 

present a practical invariance of sums of percentages of even and odd H-n-plets at all 

the levels. At the bottom: the diagram of comparative percent values at different levels 

of these dichotomic trees. At each level “n”, lengths of intervals are proportional to 

percent values of corresponding H-n-plets from Table 1. The nth level contains percent 

values of 2n H-n-plets. The total length of the strip of each layer corresponds to the 

summary value 1,0 of the percentages of its H-n-plets. The relations of dichotomies 

between the lengths of the corresponding intervals at neighboring levels are visible. 

The traditional scheme of dichotomous trees is also shown at the right. 

 

Levels of the trees of percentages in Fig. 25 contain different quantity of 

percentage summands, but their sums remain the same with high precision at all the 

levels: in the tree of even H-n-plets, the sums of percentages of even H-n-plets are equal 

to 0.5827÷0.5828, and in the tree of odd H-n-plets, the sums of percentages of odd H-

n-plets are equal to 0,4172÷0,4173. These summary values on the different levels are 

equal to the percentages of H-monoplets: %2 and %3.  

In the considered sequences of H-n-plets, numbers 2 and 3 can be denoted with 

binary numbers 0 and 1 correspondingly. In this case, we get the following 

transformation:  

- the H-duplets 22, 23, 32, 33 become binary duplets 00, 01, 10, 11 

forming the 2-bit dyadic group (they correspond to decimal numbers 0, 1, 2, 3); 

- the H-triplets 222, 223, 232, 233, 322, 323, 332, 333 forming the 3-bit dyadic 

group (they correspond to decimal numbers 0, 1, 2, 3, 4, 5, 6, 7); 

- the H-tetraplets 2222, 2223, 2233, …, 3333 forming the 4-bit dyadic group 

(they correspond to decimal numbers 0, 1, 2, 3, …, 14, 15);  

- the H-pentaplets 22222, 22223, 22232, …, 33332, 33333 forming the 5-bit 

dyadic group (they correspond to decimal numbers 0, 1, 2, 3, …, 30, 31).  

 

One can see in Fig. 25 (at the bottom) that, for example, the level with n=5 

contains a set of very different percentages of 32 H-pentaplets. It has a quasi-stochastic 

character, but in this seeming stochastically set, the regular phenomenon of percentage 

dichotomies exists related to the known principle of even-odd numbers, which was 

already met above. More precisely, the corresponding rule of percentage dichotomies 

in the interrelation between the considered levels of H-n-plets is the following: 

- the sum of the percentages of those two n-plets, whose binary numberings are 

almost identical and differ from one another only by suffixes 0 or 1, is 

practically equal to the percentage of that (n-1)-plet whose binary numbering is 

obtained from the named numberings by deleting these suffixes. For example, 

%1010+%1011 ≈ %101. 

This rule of percentage dichotomies is universal and holds for all genomic DNAs 

studied by the author. For instance, in DNA of human chromosome № 1, we have from 

the data of Tables 1 the following example of interrelation between representatives of 

alphabets of 16 H-tetraplets and 8 H-triplets (5):  

 

        %101=0,12681 ≈ %1010+%1011=0,07390+0,05294 = 0.12684               (5) 

 

This rule concerns pairs of neighboring binary numberings, one of which is even 

(its ends digit is 0) and another is odd (it ends digit is 1). It resembles Yin-Yang pairs. 



        

 

 

 Fig. 26 shows the schematic tree of percent dichotomies for H-n-plets who’s 

sets are presented in a form of dyadic groups of n-bit binary numberings, which present 

percentages of n-plets of hydrogen bonds 2 and 3 in the genomic DNAs. Each of the 

dyadic groups is posted at a separate level with the corresponding value n. Figs. 25 and 

26 present in the graphical form the important phenomenological fact of existence of a 

structural non-stochastic module (or a non-stochastic unit) of probabilities in stochastic 

organization of genomic DNAs as a set of n-plets layers. This universal non-stochastic 

module of probabilities, which is based on a deterministic condition, is a pair of 

percentages of the mentioned n-plets with even and odd binary numberings: in different 

pairs of percentages of two n-plets with such even and odd numberings, a percent value 

of one n-plet of this pair can be unpredictable and stochastic but the sum of percent 

values of both such n-plets are always practically equal to a percent value of the (n-1)-

plet, having the same binary representation with the exception of the deleted last binary 

digit (see Fig. 26). For the artistic representation of such non-stochastic modules of 

probabilities, as the sums of the percentages of two corresponding n-plets having even-

odd numberings, one can use the well-known Yin-Yang symbol ☯, which was the 

personal coat of arms of Niels Bohr 

    The above can also be formulated as the principle of interconnections of probabilities 

in n-textual representations of genomic DNAs (6): 

 

                                                   %(n)0 + %(n)1 ≈ %(n)                                           (6) 

 

where symbols (n)0 and (n)1 denote two neighboring (n+1)-plets having their suffixes 

0 and 1, and the symbol %(n) denotes a corresponding n-plet with the same binary 

numbering but without these suffixes.  

For the artistic representation of such non-stochastic modules of probabilities, 

as the sums of the percentages of two corresponding n-plets having even-odd 

numberings, one can use the well-known Yin-Yang symbol ☯, which was the personal 

coat of arms of Niels Bohr. 

 

One hundred percent 

%0 %1 

%00 %01 %10 %11 

%000 %001 %010 %011 %100 %101 %110 %111 

… … … … … … … … … … … … … … … … 

 

Fig. 26. The beginning of a conditional tree of percent dichotomies using with dyadic 

groups of n-bit binary numberings for n-plets. It illustrates the existence of non-

stochastic even-odd unites (or non-stochastic Yin-Yang modules) of probabilities in the 

stochastic organization of genomic DNAs represented as multi-level sets of n-plets. 

Here digits 0 and 1 symbolize hydrogen bonds 2 and 3 correspondingly. 

 

  Such percentage trees and complete sets of percentages of n-plets in binary sequences 

can be also graphically represented in a circular form with multi-level mandala-like 

images whose example is shown in Fig. 27. 

 



        

 

 

 
 

Fig. 27. The mandala-like presentation of dichotomic percentages of H-n-plets in the 

case of DNA of human chromosome № 1 from Table 1. Percentages of even H-n-plets 

correspond to pink sectors and percentages of odd H-n-plets correspond to blue sectors. 

Percent values are proportional to angular widths of the mandala. The first inner level 

presents %2 and %3; the second level presents %22, %23, %32, and %33 arranged 

clockwise; the third level - %222, %223, %232, %233, %322, %323, %332, %333, 

which are arranged clockwise, and so on. 

 

The dichotomic percentage trees in Fig. 25 are called fractal (or fractal-like) 

since each of their numeric member (that is, a percent value of any H-n-plet) is a top of 

its own dichotomic tree of percent values of H-n-plets from the genomic DNA. Any 

reader can check this statement using percentage data from Table 1. Fig. 28 

demonstrates this for the particular case of %23 as the top of its own dichotomic fractal 

tree. 

 

  ∑% Percentages of H-n-plets starting with 23  

0,2546 %23 

0,2547 %232+%233 

0,2546 %2322+%2323+%2332+%2333 

0,2546 

 

%23222+%23223+%23232+%23233 

+%23322+%23323+%23332+%23333 

 

Fig. 28. The beginning of the dichotomic fractal tree having %23 at its top. The left 

column contains practically the same values of percentage summaries for each level. 

 

- 7.1.1. The rule of percentage equalities in the set of genomic H-n-plets 

 

 The numeric data in Table 1 confirm else the following phenomenological rule: 

those two H-n-plets, which are read as mirror (or reversed) copies of each another (such 

as 223 and 322), always have almost the same percent values in the genomic H-n-plet 

sequence. This rule of practical equalities of percent values of such n-plets further 

reduces the degree of stochasticity in the organization of H-n-plet sequences in genomic 

DNAs. To demonstrate examples of this rule, we write out all such pairs of reversed H-

n-plets from Table 1 (percentages are rounded): 

 

%23=%32=0,2546;  %223=%322=0,1278;  %233=%332=0,0990;   

%2223=%3222=0,0728; %2232=%2322=0,082; %2233=%3322=0,046; 

%2333=%3332=0,0391; %2323=%3232=0,074; %3233=%3323=0,053; 

%22223=%32222=0,043; %22232=%23222=0,048; %22233=%33222=0,025; 



        

 

 

%22323=%32322=0,036; %22332=%23322=0,0296; %22333=%33322=0,017; 

%23223=%32232=0,0337; %23233=%33232=0,029; %23323=%32332=0,0303; 

%23333=%33332=0,014;  %32233=%33223=0,0213; %32333=%33323=0,023  (7 5) 

 

Even and odd fractal trees in Fig. 25 are asymmetric each to another: at all the 

levels, sums of percentages of even H-n-plets are not equal to sums of percentages of 

odd H-n-plets. But is it possible to algorithmically build fractal trees with symmetrical 

left and right halves based on the phenomenological data on the percentage of H-n-plets 

from Table 1? Yes, you can. To construct such symmetric percentage trees, it suffices 

to take as their vertices the percentages of those two H-n-plets that are read as mirror 

(or reversed) copies of each other (for example, %23 and %32, or %223 and %322); 

then the algorithm of the suffix dichotomies is applied for these vertices to construct 

sets of H-n-plets at other levels of the trees. Fig. 29 shows an example of so constructing 

symmetric fractal trees where percentage sums of even and odd H-n-plets are 

practically identical at all their levels. 

 

 

∑% 

Percentages of H-n-plets 

starting with 23  

Percentages of H-n-plets 

starting with 32  

 

∑% 

0,2546 %23 %32 0,2546 

0,2547 %232+%233 %322+%323 0,2546 

0,2546 %2322+%2323+%2332+%2333 %3222+%3223+%3232+%3233 0,2546 

0,2546 

 

%23222+%23223+%23232+ 

%23233+%23322+%23323+ 

%23332+%23333 

%32222+%32223+%32232+ 

%32233+%32322+%32323+ 

%32332+%32333 

0,2546 

 

 

 
 

Fig. 29. An example of symmetric fractal trees in DNA human chromosome № 1, 

which start from percentages of two mirror H-n-plets %23 and %32 and are based on 

the suffix dichotomy. Here percentage sums ∑% of even and odd H-n-plets are 

practically identical at all the levels. At the bottom: the bar chart of comparative 

percent values at different levels of these fractal trees. At each level, lengths of intervals 

are proportional to percent values of corresponding H-n-plets from Table 1. The total 

length of the strip of each layer corresponds to the sum of the percentages %23+%32 ≈ 

0,509. The relations of dichotomies between the lengths of the corresponding intervals 

at neighboring levels are visible. 

 

 One should note that for genomic DNAs, the rule of practical equality between 

percentages of those n-plets, which are read as mirror copies of each another, holds not 

only for the case of H-n-plets but also for cases of binary sequences of purine-

pyrimidine n-plets and keto-amino n-plets, which are considered in this article below.  

 

- 7.2. Prefix dichotomies of percentages of H-n-plets in DNA of human   

          chromosome № 1. 

 



        

 

 

Analysis of the phenomenological data in Table 1 also reveals that besides the described 

algorithm of suffix dichotomies, there exists an algorithm of prefix dichotomies in the 

genomic DNA: the percentage of any H-n-plet is practically equal to the sum of 

percentages of those two H-(n+1)-plets, which are generated from this H-n-plet by 

addition to it the prefixes 2 and 3 as Fig. 30 illustrates. We call this type of dichotomy 

the prefix dichotomy. 

 

      %2 ≈ 

                

 

%22 + %32 

      %22 ≈ 

                

 

%222 + %322 

 

… 

      %Hn ≈ 

                

 

%2Hn + %3Hn 

 
0,58276=%2 ≈ %22+%32=0,58275 

0,3281=%22 ≈ %222+%322=0,3281 

0,2546=%23 ≈ %223+%323=0,2546 

 0,2003=%222 ≈ %2222+%3222=0,2003 

0,41724=%3 ≈ %23+%33=0,41725 

0,2546=%32 ≈ %232+%332=0,2547 

0,1626=%33 ≈ %233+%333=0,1626 

  0,06363=%333 ≈ %2333+%3333=0,06365 
 

 

Fig. 30. At the top: the illustration of the general algorithm of the prefix dichotomy in 

interrelations between percentages of H-n-plets and H-(n+1)-plets in a genomic 

sequence of hydrogen bonds, which is analyzed by the HBS-method. Here the symbol 

%Hn denotes a percentage of any H-n-plet under studying (values n = 1, 2, 3, 4, 5 were 

studied). At the bottom: for the case of DNA of the human chromosome №1, a few 

numeric examples are shown of high-precision equalities between a percentage of any 

H-n-plet and a sum of the percentages of two H-(n+1)-plets, which are generated from 

it by the addition of prefixes 2 and 3. Added prefixes 2 and 3 are highlighted by green. 

Rounded values of percentages of the H-n-plets are taken from Table 1. 

 

 The algorithm of the prefix dichotomy of percentages of genomic H-n-plets 

generates corresponding fractal trees of percentages illustrated in Fig. 31. The lists of 

H-n-plets in these left and right fractal trees differ from the lists of H-n-plets in the trees 

of even and odd H-n-plets in Fig. 25. But the rule of approximate equalities of 

percentages sums at all the levels of each tree holds in this case as well. 

 

 

∑ % 

Percentages of H-n-plets in 

the left fractal tree under 

the prefix dichotomy 

Percentages of H-n-plets in 

the right fractal tree under 

the prefix dichotomy 

 

∑ % 

0,5828 %2 %3 0,4172 

0,5828 %32+%22 %33+%23 0,4172 
0,5828 %332+%232+%322+%222 %333+%233+%323+%223 0,4172 
0,5827 

 

%3332+%2332+%3232+ 

%2232 +%3322+%2322+ 

%3222+%2222 

%3333+%2333+%3233+%22

33+%3323+%2323+ 

%3223+%2223 

0,4173 
 

0,5828 
 

%33332+%23332+ 

%32332+%22332+ 

%33232+%23232+ 

%32232+%22232+ 

%33322+%23322+ 

%32322+%22322+ 

%33222+%23222+ 

%32222+%22222 

%33333+%23333+ 

%32333+%22333+ 

%33233+%23233+ 

%32233+%22233+ 

%33323+%23323+ 

%32323+%22323+ 

%33223+%23223+ 

%32223+%22223 

0,4172 

 



        

 

 

 

Fig. 31. The beginning of the fractal dichotomic percentage trees of H-n-plets, which 

is based on the algorithm of the prefix dichotomy of percentages of H-n-plets when 

passing from the H-n-plet representation of the H-sequence to its H-(n+1)-

representation. The case of DNA of human chromosome № 1 is presented. Rounded 

numeric data of percentages are taken from Table 1. The left and the right columns 

present an invariance of sums of percentages of H-n-plets at all the levels of the left and 

right fractal trees. 

  

It should be noted that, in a general case, percentage value of each H-n-plet 

simultaneously belongs to different fractal trees of percentages of H-n-plets. For 

example, %232 belongs to all above-described fractal trees. The stochastic organization 

of hydrogen bond sequences in genomic DNAs deals with interrelated nets of fractal 

dichotomic trees.  

As it was above noted, the author has obtained a confirmation of the described 

rules of dichotomies of percent values of H-n-plets in analysis of a wide set of genomic 

DNAs in eukaryotes and prokaryotes without any exception. This testifies in favor of 

the existence of universal rules of nontrivial algebraic invariants of a globally genomic 

nature, which remain unchanged over million years of biological evolution, during 

which millions of species of organisms die off and new ones appear (although locally 

genomic sequences are modified by mutations, natural selection mechanisms, etc.). At 

this stage of research, the described rules are a candidacy for the role of universal 

genetic rules. Additional studies of the widest set of genomic DNAs are required to test 

their universality. 

One should add that in considered binary sequences, digits 2 and 3 of hydrogen 

bonds can be denoted by binary numbers 0 and 1 to note a connection of the families 

of H-n-plets, having 2n-members in each family under fixed value of n, with dyadic 

groups of binary numbers. In dyadic groups of binary numbers, there exists the above-

described notion of complementarity in pairs of binary numbers, which are transformed 

each to another by the complementarity operation 0↔1.This operation is used in matrix 

genetics to reveal hidden complementary relations in emergence properties of the 

genetic coding system (see above paragraphs 2 and 3). Concerning the considered 

fractal trees of percent dichotomies in Figs. 25, 28, and 30, one can note that at each of 

their levels H-n-plets in left and right trees consists of complementary H-n-plets. For 

example, in Fig. 25 at the level of duplets (n = 2), the left tree contains percentages of 

H-duplets 22, 23 and the right tree contains percentages of their complementary H-

duplets 33 and 32 (the complementarity operation is 2↔3). In this relation, these left 

and right fractal trees are complementary each to another. Such complementarities also 

hold for other pairs of dichotomy fractal trees presented below. It is additional evidence 

in favor of the key role of the principle of complementarity and dichotomies in the 

genetic system related to  the ancient principle "like begets like". The complementarity 

principle presented in the DNA double helix model by Watson and Crick is a particular 

case of its realization in living matter. 

 

-7.3. Regarding importance of hydrogen bonds and the binary-stochastic  

         analogy between genetic and nervous systems 

 

The described rules concerning to percentages values of n-plets of hydrogen 

bonds in genomic DNAs attract an additional attention in the light of the modern 

knowledge about an important role of hydrogen bonds in genetics and living bodies in 



        

 

 

the whole. Really, as it is known, the hydrogen bonds are one of the most important 

components of life. It occurs in many biological structures [American Institute Of 

Physics, 1999]. In particular, hydrogen bonding play the role of a promotional factor 

for intermolecular vibrational energy relaxation, and as a driving force for the 

occurrences of specific reaction channels in binary molecular complexes [Chatterjee, 

Biswas, Chakraborty, 2020] Hydrogen bonding is an important factor in the functioning 

of enzymes, which manage molecular processes in biological bodies [Shan, Herschlag, 

1999;  Trylska, Grochowski, McCammom, 2004]. The ultrafast intermolecular 

hydrogen bond dynamics of water was revealed [Zhao, et al., 2020]. The Nobel laureate 

L. Pauling emphasized: “Although the hydrogen bond is not a strong bond, it has a 

great significance in determining the properties of substances… It has been recognized 

that hydrogen bonds restrain protein molecules to their native configurations, and I 

believe that as the methods of structural chemistry are further applied to physiological 

problems it will be found that the significance of the hydrogen bond for physiology is 

greater than that of any other single structural feature” [Pauling, 1940].  

Hydrogen bonds determine many of the properties of water and ice. Many emergent 

properties of hydrogen bond systems in living bodies have yet to be discovered. The 

richness of the emergent properties of hydrogen bond systems can be illustrated by the 

example of jellyfish, which are 98% water, representing, figuratively speaking, a 

configured bag with a water substrate of hydrogen bonds. At the same time, jellyfish 

are the most ancient multicellular animals of the Earth with a huge evolutionary 

diversity of species and functional capabilities, including the possibility of sexual and 

asexual reproduction. Jellyfish of some species for reproduction are dichotomically 

divided in half or are engaged in budding. Finally, there are the jellyfish Turritopsis 

dohrnii, which have the ability to live forever by reversing the aging process. And 

jellyfish cannot be attributed to any one group. Many of them are not only on 

completely different branches of the phylogenetic tree of animals, but also live in 

different environments: some species prefer the surface of the ocean, others live in the 

depths, and still others have chosen fresh waters. Let's add to the topic of hydrogen 

bonds that hydrogen is the most common element in the Universe: it accounts for about 

88.6% of all atoms. The discovery of the above-described universal rules of percent 

values of n-plets of hydrogen bonds in genomic DNAs gives new abilities and 

approaches to understanding and modeling the important role of hydrogen bonds in 

living nature. 

Concerning sequences of 2 and 3 hydrogen bonds in DNAs, it is interesting that 

the generation of electrical spikes in brain neurons is connected with the same numbers 

2 and 3. These neuron spikes are produced by using a flow of Na+ and K+ ions, which 

is provided by so called Na+/K+ pump. But the Na+/K+ pump uses the energy of one 

ATP molecule to exchange 3 intracellular Na+ ions for 2 extracellular K+ ions [Glitsch, 

2001]. Some publications claim that functional features of the Na+/K+ pump can be 

used for brain computations [Forrest, 2014].  

Concerning the above-described universal rule of stochastic organization of 

genomic DNAs sequences of hydrogen bonds numbers 2 and 3 in genetic information, 

the following idea arises:  

- the work of the nervous system, including brain work, uses the sequences of 

numbers 2 and 3 in neural activity by analogy with the use of sequences of  

numbers 2 and 3 in genetic DNA molecules.  

This idea can be called a hypothesis about the numeric binary-stochastic analogy of the 

work of the nervous and genetic systems. This idea is supported by the following 

circumstances: 1) the nervous system is genetically inherited, and therefore must be 



        

 

 

structurally associated with genetic coding and genetic informatics; 2) in biological 

evolution, the nervous system appeared relatively recently, and many organisms lived 

and live without it, having efficient information processing systems based on the 

activity of genetically inherited proteins and enzymes, in which hydrogen bonds play 

an important role; 3) the work of neurons is also based on stochastics: from different 

synapses to a neuron, signals arrive in a stochastic manner, which are somehow 

processed in networks of neurons; 4) the above-described universal rules of 

dichotomies in percentage interconnections of n-plets of hydrogen bonds 2 and 3 in the 

multi-textual representation of genomic DNAs are correlated in some degree with the 

known fact of neurophysiology that “the branching of neuronal axons and dendrites 

are always bifurcations. That is, they always branch of into two separate paths and 

never three, four or five etc.”  [Tsang, 2016, p. 235]. 

   Speaking on the author's hypothesis about the numeric binary-stochastic 

organization of nervous system work, one can additionally remind about another fact 

of the importance of binary principles in neurons activity:  the “all-or-none law” notes 

that inherited activity of a single nerve fiber under its stimulation always gives a 

maximal response or none at all [https://en.wikipedia.org/wiki/All-or-none_law]. (The 

author here expresses special thanks to Prof. Matthew He from the USA, who told him 

in 2018 on the publication about these numbers 3 and 2 under generating spikes in 

neurons).  

The formulated hypothesis assumes that information in nerve fibers is 

represented by sequences of ion numbers 2 and 3. To confirm or refute this hypothesis, 

special experimental studies on neurons are needed. 

Concerning the topic of numbers 3 and 2 in genetics, one should note the work 

[Boulay, 2022, 2023] presenting author’s results about an important role of numbers 3 

and 2 in structural organization of the set 20 proteinogenic amino acids in relation to 

their physicochemical properties, etc. 

 

- 7.4. Dichotomies of percentages of H-n-plets in DNA of the plant  

       Arabidopsis thaliana 

  

Let us turn now to similar analysis of percentages of hydrogen bond n-plets in 

DNA of Arabidopsis thaliana chromosome № 1 with the HBS-method. Initial data 

about this chromosomal DNA, whose length is equal to 30427671 bp, were taken from 

the GenBank: https://www.ncbi.nlm.nih.gov/genome/4. Table 2 shows corresponding 

percent values of H-n-plets.  

 

Table 2. Phenomenological percent values of each of the H-n-plets in 

corresponding H-n-plets representations of the DNA of Arabidopsis thaliana 

chromosome № 1 (n = 1, 2, 3, 4, 5). Its H-sequence contains about 30 million digits 2 

and 3. Initial data on this chromosome were taken from the GenBank: 

https://www.ncbi.nlm.nih.gov/genome/4. Even H-n-plets starting with an even number 

2 are in red, and odd H-n-plets starting with an odd number 3 are in blue. 

 

%2 %3  %22 %23 %32 %33 

0,641264 0,358736  0,402316 0,238874 0,239022 0,119788 

 

%222 %223 %232 %233 %322 %323 %332 %333 

0,251244 0,151366 0,157748 0,081231 0,150704 0,088018 0,081174 0,038514 
 



        

 

 

 

%2222 %2223 %2232 %2233 %2322 %2323 %2332 %2333 

0,160672 0,090685 0,100824 0,050154 0,100737 0,056957 0,056027 0,025264 

%3222 %3223 %3232 %3233 %3322 %3323 %3332 %3333 

0,090644 0,060129 0,056975 0,031122 0,050243 0,030993 0,025347 0,013226 
 

 

%22222 %22223 %22232 %22233 %22322 %22323 %22332 %22333 

0,104572 0,055892 0,060663 0,030081 0,064903 0,035879 0,034458 0,015703 

%23222 %23223 %23232 %23233 %23322 %23323 %23332 %23333 

0,060598 0,040034 0,037885 0,019157 0,034455 0,021476 0,016792 0,008449 

%32222 %32223 %32232 %32233 %32322 %32323 %32332 %32333 

0,0561 0,034999 0,040029 0,020194 0,035814 0,021226 0,021426 0,009577 

%33222 %33223 %33232 %33233 %33322 %33323 %33332 %33333 

0,030056 0,020104 0,019081 0,011829 0,015761 0,009626 0,008443 0,004738 
 

  

 Using these data of Table 2, any reader can check that dichotomic rules of H-

n-plets percentages, described above for the human chromosomal DNA, hold as well 

in the chromosomal DNA of the plant Arabidopsis thaliana having another percent 

values of its H-n-plets. For example, Figs. 32 and 33 show fractal trees in the cases of 

the suffix dichotomy and the prefix dichotomy of percent values of H-n-plets for the 

chromosomal DNA of Arabidopsis thaliana. 

 

 
 

 
 

Fig. 32. At the top: the beginning of the fractal dichotomic percentage trees of H-n-

plets, which is based on the algorithm of the suffix dichotomy. The case of DNA of 

chromosome № 1 of Arabidopsis thaliana is presented. Rounded numeric data of 

percentages are taken from Table 2. The left and the right columns present a practical 

invariance of sums of percentages of even and odd H-n-plets at all the levels (compare 

with Fig. 25). At the bottom: the diagram of comparative percent values at different 

levels of these fractal trees. At each level, lengths of intervals are proportional to 

percent values of corresponding H-n-plets from Table 2. The nth level contains percent 

values of 2n H-n-plets. The total length of the strip of each layer corresponds to the 



        

 

 

summary value 1,0 of the percentages of its H-n-plets. The relations of dichotomies 

between the lengths of the corresponding intervals at neighboring levels are visible. 

       

Again, each of the members of these parental fractal trees of probabilities (for 

example, %23) serves as a top of its own dichotomous fractal tree by analogy with the 

example in Fig. 28). 

 

- 7.5. Dichotomies of percentages of H-n-plets in genomic DNA of the  

             bacteria Bradyrhizobium japonicum 

 

Let us consider now an example of DNA from a prokaryotic genome of the 

rhizobacteria Bradyrhizobium japonicum that is of essential economic importance. 

Initial genomic data about the rhizobacteria Bradyrhizobium japonicum strain E109, 

(complete genome, 9224208 bp) were taken from 

https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank. The length of 

this sequence is more than 20 times shorter than the length of the sequence of the human 

chromosome №1. Table 3 shows corresponding percent values of H-n-plets in genomic 

DNA of this bacteria.  

 

Table 3. Phenomenological percent values of each of the H-n-plets in corresponding 

H-n-plets representations of the DNA of the bacteria Bradyrhizobium japonicum strain 

E109 (https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank). Even H-

n-plets starting with an even number 2 are in red, and odd H-n-plets starting with an 

odd number 3 are in blue. 

 

%2 %3   %22 %23 %32 %33 

0,363394 0,636606   0,134551 0,228800 0,228886 0,407763 

 

%222 %223 %232 %233 %322 %323 %332 %333 

0,041442 0,0930503 0,0747 0,151042 0,0944 0,137178 0,153338 0,25485 

 

%2222 %2223 %2232 %2233 %2322 %2323 %2332 %2333 

0,015772 0,0256005 0,035660 0,057463 0,035715 0,040336 0,064447 0,088315 

%3222 %3223 %3232 %3233 %3322 %3323 %3332 %3333 

0,025656 0,0672322 0,040269 0,095435 0,057465 0,09562 0,088805 0,166211 

 

%22222 %22223 %22232 %22233 %22322 %22323 %22332 %22333 

0,005604 0,0099998 0,0090078 0,016611 0,015416 0,020293 0,022435 0,035102 

%23222 %23223 %23232 %23233 %23322 %23323 %23332 %23333 

0,009000 0,0269259 0,0094122 0,030554 0,022143 0,042121 0,026707 0,061874 

%32222 %32223 %32232 %32233 %32322 %32323 %32332 %32333 

0,010092 0,0155293 0,0267909 0,040687 0,020316 0,019918 0,04223 0,053406 

%33222 %33223 %33232 %33233 %33322 %33323 %33332 %33333 

0,016769 0,0407547 0,0309121 0,064771 0,035204 0,053101 0,06168 0,104633 

 

 

https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank
https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank


        

 

 

Using these data of Table 3, any reader can check that dichotomic rules of H-n-plets 

percentages, described above for the human chromosomal DNA and for the 

chromosomal DNA of the plant Arabidopsis thaliana, hold as well in the genomic DNA 

of the bacteria Bradyrhizobium japonicum strain E109. For example, Figs. 33 and 34 

show fractal trees in the case of the suffix dichotomy and the prefix dichotomy of 

percent values of H-n-plets for the genomic DNA of this bacteria. 

 

 
 

 
 

Fig. 33. At the top: the beginning of the fractal dichotomic percentage trees of H-n-

plets, which is based on the algorithm of the suffix dichotomy. The case of genomic 

DNA of the bacteria Bradyrhizobium japonicum strain E109 is presented. Rounded 

numeric data of percentages are taken from Table 3. The left and the right columns 

present a practical invariance of sums of percentages of even and odd H-n-plets at all 

the levels (compare with Figs. 25 and 32). At the bottom: the diagram of comparative 

values of percentage sums at different levels of these fractal trees. 

 

 
 



        

 

 

Fig. 34. The beginning of the fractal dichotomic percentage trees of H-n-plets, which 

is based on the algorithm of the prefix dichotomy. The case of genomic DNA of the 

bacteria Bradyrhizobium japonicum strain E109 is presented. Rounded numeric data of 

percentages are taken from Table 3. The left and the right columns present a practical 

invariance of sums of percentages of even and odd H-n-plets at all the levels. 

 

Again, each of the members of these parental fractal trees of probabilities (for 

example, %23) serves as a top of its own dichotomous fractal tree by analogy with the 

example in Fig. 28). 

 

8. Universal algorithms for dichotomies of probabilities in purine-

pyrimidine sequences of genomic DNAs 

 

In addition to the above-described phenomena of percent dichotomy of n-plets 

of hydrogen bonds in genomic DNAs, there are similar phenomena of percent 

dichotomies in other binary representations of genomic DNAs, which are described 

below. 

As it was noted in the beginning of the article, the four nucleotides A, T, C, G 

of DNA are interrelated by their symmetrical peculiarities into the united molecular 

ensemble having the three pairs of binary-oppositional traits or indicators: strong-and-

weak hydrogen bonds, purines-and-pyrimidines, and keto-and-amino. 

 Above we described the universal rules of dichotomies for percent values of n-

plets only for the case of the binary representation of genomic DNAs on the basis of 

binary-oppositional indicators of weak and strong hydrogen bonds 2 and 3. Now let us 

study the case of another binary representation of single-stranded genomic DNAs on 

the basis of binary-oppositional indicators of purines and pyrimidines. In genetics, 

purines (A and G), having 2 rings in their molecules, are traditionally denoted by the 

symbol “r”, and pyrimidines (T and C), having 1 ring in their molecules, by the symbol 

“y”. Correspondingly, we will study single-stranded genomic DNAs as binary 

sequences of purines and pyrimidines, that is, the symbolic RY-sequences like as 

ryyryrrryy… with the described HBS-method analyzing in this case percent values of 

n-plets of purine and pyrimidine (that is, RY-n-plets) in appropriate representations of 

the considered genomic DNA.  

 Let us return to single-stranded DNA of human chromosome № 1 to study 

percent values of RY-n-plets in its RY-sequence with the HBS-method. Table 4 shows 

percent values of RY-n-plets in this chromosomal DNA. 

 

Table 4. Phenomenological percent values of each of the n-plets of purines and 

pyrimidines in corresponding binary RY-n-plets representations of the single-stranded 

DNA of human chromosome № 1 (n = 1, 2, 3, 4, 5). Its RY-sequence contains about 

250 million purines “r” and pyrimidines “y”. Initial data on this chromosome were 

taken from the GenBank: https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11. 

Those RY-n-plets, which start with a purine, having 2 rings in its molecule, are in red; 

those RY-n-plets, which start with a pyrimidine, having 1 ring in its molecule, are in 

blue. 

 

%r %y   %rr %ry %yr %yy 

0,499745 0,500255   0,280682 0,219000 0,219026 0,281192 

 

https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11


        

 

 

%rrr %rry %ryr %ryy %yrr %yry %yyr %yyy 
0,164628 0,1160615 0,103115 0,116037 0,115959 0,10310291 0,115942 0,165155 

 

%rrrr %rrry %rryr %rryy %ryrr %ryry %ryyr %ryyy 

0,097738 0,0669275 0,05563 0,060408 0,055506 0,04760742 0,048985 0,066984 

%yrrr %yrry %yryr %yryy %yyrr %yyry %yyyr %yyyy 

0,066911 0,0490378 0,047495 0,055562 0,060507 0,0555435 0,066937 0,098221 

 

%yyyyy %yyyyr %yyyry %yyyrr %yyryy %yyryr %yyrry %yyrrr 
0,052593 0,036184 0,031146 0,033427 0,031192 0,026079 0,028834 0,033249 

%yryyy %yryyr %yryry %yryrr %yrryy %yrryr %yrrry %yrrrr 
0,030293 0,026229 0,025117 0,026067 0,028826 0,026129 0,028409 0,035966 

%ryyyy %ryyyr %ryyry %ryyrr %ryryy %ryryr %ryrry %ryrrr 
0,036341 0,028228 0,026219 0,02869 0,02524 0,025138 0,026237 0,031355 

%rryyy %rryyr %rryry %rryrr %rrryy %rrryr %rrrry %rrrrr 
0,034249 0,028601 0,025347 0,031376 0,034156 0,030331 0,036131 0,052622 

 

Analysis of the phenomenological data in Table 4 reveals that purine-pyrimidine 

sequences of the genomic DNA obey the same dichotomy rules for the percentage 

values of purine-pyrimidine n-plets, which are similar to dichotomic rules described 

above for the case of hydrogen bond n-plets. Let us demonstrate this with a few concrete 

examples. 

 

- 8.1. Suffix dichotomies of percentages of n-plets in the purine-pyrimidine 

sequence of DNA of human chromosome № 1 

 

Analysis of the phenomenological data in Table 4 reveals the following: the percentage 

of any RY-n-plet is practically equal to the sum of percentages of those two RY-(n+1)-

plets, which are generated from this RY-n-plet by addition the suffixes r and y to it as 

Fig. 35 illustrates with separate examples. 

  

      %r ≈ 

                

 

%rr + %ry 

      %rr ≈ 

                

 

%rrr + %rry 

      %ry ≈ 

                

 

%ryr + %ryy 

       

… 

 

  

0,49975=%r ≈ %rr+%ry=0,49978 

0,28068=%rr ≈ %rrr+%rry=0,28069 

0,21900=%ry ≈ %ryr+%ryy=0,21915 

0,16463=%rrr ≈ %rrrr+%rrry=0,16467 

0,50026=%y ≈ %yr+%yy=0,50023 

0,21903=%yr ≈ %yrr+%yry=0,21906 

0,28119=%yy ≈ %yyr+%yyy=0,28110 

0,16516=%yyy ≈%yyyr+%yyyy=0,16516 

 

Fig. 35. At the top: the illustration of the general algorithm of the suffix dichotomy in 

interrelations between percentages of RY-n-plets and RY-(n+1)-plets in a genomic 

binary sequence of purines and pyrimidines, which is analyzed by the HBS-method. 

At the bottom: for the case of DNA of the human chromosome №1, a few numeric 

examples are shown of high-precision equalities between a percentage of any RY-n-

plet and a sum of the percentages of two RY-(n+1)-plets, which are generated from it 



        

 

 

by the addition of suffixes r and y. Added suffixes r and y are highlighted by green. 

Rounded values of percentages of the RY-n-plets are taken from Table 4. 

 

    Fig. 35 represents only a few examples of high-precision equality of the 

percentages. Using numeric data from Table 4, any reader can check himself that such 

equalities of percentage dichotomies also hold with similar high precisions for all other 

possible variants of the noted percentages dichotomy. The author has systematically 

checked these percentage dichotomic equalities in many genomic DNAs, listed below, 

only for n = 1, 2, 3, 4, 5. He also selectively checked the fulfillment of such equalities 

for higher values of n getting positive results in every case, but he did not check at what 

values of n these dichotomic percentage equalities cease to hold. 

The rule of the suffix dichotomy of RY-n-plets percentages leads to fractal 

dichotomous trees of RY-n-plets percentages, which is shown in Fig. 37 for the case of 

DNA of human chromosome № 1. RY-n-plets starting with a purine r (having even 

number 2 of molecular rings) are conditionally called even RY-n-plets (their 

percentages are marked by pink in Fig. 36 and further), and RY-n-plets starting with 

pyrimidine y (having 1 ring) are called odd RY-n-plets (their percentages are marked 

by blue in Fig. 36 and further). Each of the levels of these fractal trees with percentage 

values of even and odd RY-n-plets corresponds to a certain magnitude of n.  

 

 

∑ % 

Percentage of RY-n-plets 

starting with r 

Percentage of RY-n-plets 

starting with y 

 

∑ % 
0,49975 %r %y 0,50026 

0,49978 %ry+%rr %yy+%yr 0,50022 

0,49978 %ryy+%ryr+%rry+%rrr %yyy+%yyr+%yry+%yrr 0,50016 

0,49979 %ryyy+%ryyr+%ryry+%ryrr 

+%rryy+%rryr+%rrry+%rrrr 

%yyyy+%yyyr+%yyry+%yyrr 

+%yryy+ %yryr+%yrry+%yrrr 

0,50021 

0,49979 

 

%ryyyy+%ryyyr+%ryyry+ 

%ryyrr+%ryryy+%ryryr+ 

%ryrry+%ryrrr+%rryyy+ 

%ryyyr+%rryry+%rryrr+ 

%rrryy+%rrryr+%rrrry+%rrrrr 

%yyyyy+%yyyyr+%yyyry+ 

%yyyrr+%yyryy+%yyryr+ 

%yyrry+%yyrrr+%yryyy+ 

%yryyr +%yryry+%yryrr+ 

%yrryy+%yrryr+%yrrry+%yrrrr 

0,50021 

 

 

 
 

 Fig. 36. At the top: the beginning of the fractal dichotomic percentage trees of 

n-plets of purines (r) and pyrimidines (y), which is based on the algorithm of the suffix 

dichotomy in the case of DNA of human chromosome № 1. Rounded numeric data of 

percentages are taken from Table 4. The left and the right columns present a practical 

invariance of sums of percentages of even and odd RY-n-plets at all the levels. At the 

bottom: the diagram of comparative percent values at different levels of these fractal 

trees. At each level, lengths of intervals are proportional to percent values of 

corresponding RY-n-plets from Table 4. The nth level contains percent values of 2n 

RY-n-plets. The total length of the strip of each layer corresponds to the summary value 

1,0 of the percentages of its RY-n-plets. The relations of dichotomies between the 

lengths of the corresponding intervals at neighboring levels are visible. 



        

 

 

 

Levels of the trees of percentages in Fig. 36 contain different quantity of percentage 

summands, but their sums remain the same with high precision at all the levels: in the 

tree of even RY-n-plets, the sums of percentages of even RY-n-plets are equal to 

0.4998, and in the tree of odd RY-n-plets, the sums of percentages of odd RY-n-plets 

are equal to 0,5002. These summary values on the different levels are equal to the 

percentages of RY-monoplets: %r and %y. In the whole, in the considered case of the 

purine-pyrimidine sequences of RY-n-plets of the chromosomal DNA, we have a 

situation, which is very similar to the above-presented situation with n-plets of 

hydrogen bonds including the case of the prefix dichotomies (Figs. 24-31) as any reader 

can check himself. In particular, again, each of the members of these parental fractal 

trees of probabilities serves as a top of its own dichotomous fractal tree by analogy with 

the example in Fig. 28. Fig. 37 illustrates this for the case of %ry, which serves as a top 

of its own dichotomous fractal tree. 

 

  ∑% Percentages of RY-n-plets starting with ry  

0,22731 %ry 

0,22729 %ryr+%ryy 

0,22730 %ryrr+%ryry+%ryyr+%ryyy 

0,22732 

 

%ryrrr+%ryrry+%ryryr+%ryryy 

+%ryyrr+%ryyry+%ryyyr+%ryyyy 

 

Fig. 37. The beginning of the dichotomic fractal tree having %ry at its top. The left 

column contains practically the same values of percentage summaries for each level. 

 

But in the case of percentages of RY-n-plets in genomic DNAs, the additional 

interesting rule exist, which is presented in the next section. 

 

- 8.2. Percent palindromes and the rule of equality of percent values of 

complementary purine-pyrimidine n-plets in genomic DNAs 

 

One can see in Fig. 37 the mirror symmetry between left and right halves of the 

diagram regarding the width of the intervals at each of the levels of the fractal 

dichotomic percentage trees of n-plets of purines (r) and pyrimidines (y). This mirror 

symmetry is the consequence of the phenomenological rule of practical equality 

between percent values of those two RY-n-plets whose expressions are transformed 

each into another with the operation of complementary inversion r↔y (purine ↔ 

pyrimidine). For example, %rrr=0,165 ≈ %yyy=0,165, %yrrr=0,06691 ≈ 

%ryyy=0,06698, and so on (see Table 4). 

The rule can be called the rule of the complementarity of percent values of 

complementary RY-n-plets in binary RY-n-sequences of genomic DNAs. It has some 

relations with complementary structure of double-stranded DNAs. Fig. 38 illustrates 

this with examples of a double-stranded DNA having arbitrary sequences of purines 

and pyrimidines, which are presented here as sequences of duplets and triplets. 



        

 

 

 
 

Fig. 38. Fig. 38 illustrates this with examples of a double-stranded DNA, which 

is shown in a form of complementary sequences of purines (r) and pyrimidines (y).  

These sequences are presented here as sequences of duplets and triplets. For each of 

duplets and triplets, its rounded percent value in DNA of human chromosome № 1 from 

Table 4 is indicated. 

 

If purine r and pyrimidine y are denoted by binary symbols 0 and 1 

correspondingly, then alphabetic sets of numberings of RY-n-plets in Table 4 contain 

their binary numberings in ordered form, specified as a dyadic group of binary numbers. 

With this ordering, the set of percentages for each fixed n turns out to be a palindrome 

of probabilities. For example, according to Table 4, the dyadic group of 3-bit binary 

numberings of RY-triplets 000, 001, 010, 011, 100, 101, 110, 111 is connected with the 

following palindrome of percent values: 0.165 - 0.116 - 0.103 - 0.116 - 0.116 - 0.103 - 

0.116 - 0.165. In biology, as one of the mysteries of the genetic system, the problem of 

the wide distribution of palindromes in DNA nucleotide sequences has long been 

known. In genetics, the  topic of palindromes has been the subject of tens of thousands 

of publications, since the DNA texts of different genomes contain an abundance of 

palindromes. In the human genome, about a third of DNA texts are represented by them 

[Gusfield, 1997]. In evolutionary biology, the abundance of such palindromes in 

genomes is considered as evidence that DNA texts are not random, that they are not 

reducible to a set of random mutations. What is the relationship between the above-

described probability palindromes and the known molecular palindromes of nucleotide 

sequences? This is an open question at this stage of research. 

 

- 8.3. Suffix dichotomies of percentages of n-plets in the purine-pyrimidine 

sequence of DNA of the chromosome № 1 of the plant Arabidopsis thaliana  

 

Table 5 shows percent values of RY-n-plets in the RY-sequence of the DNA 

chromosome № 1 of the plant Arabidopsis thaliana. 

 

Table 5. Phenomenological percent values of each of the n-plets of purines and 

pyrimidines in corresponding binary RY-n-plets representations of the DNA of 

chromosome № 1 of the plant Arabidopsis thaliana (n = 1, 2, 3, 4, 5). The RY-sequence 

in its single-stranded DNA contains about 30 million of purines “r” and pyrimidines 

“y”. Initial data on this chromosome were taken from the GenBank: 



        

 

 

https://www.ncbi.nlm.nih.gov/genome/4. Those RY-n-plets, which start with a purine, 

having 2 rings in its molecule, are in red; those RY-n-plets, which start with a 

pyrimidine, having 1 ring in its molecule, are in blue. 

 

%r %y   %rr %ry %yr %yy 

0,499973 0,500027   0,27281 0,227107 0,227219 0,272864 

 

%rrr %rry %ryr %ryy %yrr %yry %yyr %yyy 
0,153168 0,11937 0,108119 0,119581 0,119372 0,107565 0,119548 0,153278 

 

%rrrr %rrry %rryr %rryy %ryrr %ryry %ryyr %ryyy 
0,088799 0,064357 0,056438 0,062954 0,05755 0,050343 0,054902 0,064304 

%yrrr %yrry %yryr %yryy %yyrr %yyry %yyyr %yyyy 
0,064635 0,055006 0,051204 0,056601 0,06209 0,057413 0,064448 0,088958 

 

%ryyyy %ryyyr %ryyry %ryyrr %ryryy %ryryr %ryrry %ryrrr 
0,036341 0,028228 0,026219 0,02869 0,02524 0,025138 0,026237 0,031355 

%rryyy %rryyr %rryry %rryrr %rrryy %rrryr %rrrry %rrrrr 
0,034249 0,028601 0,025347 0,031376 0,034156 0,030331 0,036131 0,052622 

%yyyyy %yyyyr %yyyry %yyyrr %yyryy %yyryr %yyrry %yyrrr 
0,045782 0,036184 0,031146 0,033427 0,031192 0,026079 0,028834 0,033249 

%yryyy %yryyr %yryry %yryrr %yrryy %yrryr %yrrry %yrrrr 
0,030293 0,026229 0,025117 0,026067 0,028826 0,026129 0,028409 0,035966 

 

        Analysis of the phenomenological data in Table 5 reveals the following: the 

percentage of any RY-n-plet is practically equal to the sum of percentages of those two 

RY-(n+1)-plets, which are generated from this RY-n-plet by addition to it the suffixes 

r and y as Fig. 39 illustrates with separate examples. 

 

    0,49997=%r ≈ %rr+%ry=0,49992 

0,2728=%rr ≈ %rrr+%rry=0,2725 

0,2271=%ry ≈ %ryr+%ryy=0,2277 

  0,15317=%rrr ≈ %rrrr+%rrry=0,15316 

0,50003=%y ≈ %yr+%yy=0,50008 

0,2272 =%yr ≈ %yrr+%yry=0,2269 

0,27286=%yy ≈ %yyr+%yyy=0,27283 

0,1533=%yyy ≈ %yyyr+%yyyy=0,1534 

 

Fig. 39. For the case of DNA of the first chromosome of the plant Arabidopsis thaliana, 

a few numeric examples are shown of high-precision equalities between a percentage 

of any RY-n-plet and a sum of the percentages of two RY-(n+1)-plets, whose binary 

numberings are generated from its binary numbering with the addition of suffixes r and 

y. Added suffixes r and y are highlighted with green. Rounded values of percentages of 

the RY-n-plets are taken from Table 5. 

 

 

∑ % 

Percentage of RY-n-plets 

starting with purine “r” 

Percentage of RY-n-plets 

starting with pyrimidine “y” 

 

∑ % 
0,49997 %r %y 0,50003 

0,49917 %ry+%rr %yy+%yr 0,50008 

0,50024 %ryy+%ryr+%rry+%rrr %yyy+%yyr+%yry+%yrr 0,49976 

 

0,49965 

%ryyy+%ryyr+%ryry+%ryrr 

+%rryy+%rryr+%rrry+%rrrr 

%yyyy+%yyyr+%yyry+%yyrr 

+%yryy+ %yryr+%yrry+%yrrr 

 

0,50036 



        

 

 
 

0,50026 

 

%ryyyy+%ryyyr+%ryyry+ 

%ryyrr+%ryryy+%ryryr+ 

%ryrry+%ryrrr+%rryyy+ 

%ryyyr+%rryry+%rryrr+ 

%rrryy+%rrryr+%rrrry+%rrrrr 

%yyyyy+%yyyyr+%yyyry+ 

%yyyrr+%yyryy+%yyryr+ 

%yyrry+%yyrrr+%yryyy+ 

%yryyr +%yryry+%yryrr+ 

%yrryy+%yrryr+%yrrry+%yrrrr 

 

0,49293 

 

 

Fig. 40. The beginning of the fractal dichotomic percentage trees of n-plets of purines 

(r) and pyrimidines (y), which is based on the algorithm of the suffix dichotomy in the 

case of DNA of the first chromosome of the plant Arabidopsis thaliana. Rounded 

numeric data of percentages are taken from Table 5. The left and the right columns 

present a practical invariance of sums of percentages of even (red) and odd (blue) RY-

n-plets at all the levels. 

  

         Comparison of Figs. 37 and 40 shows the similarity of stochastic organization of 

binary purine-pyrimidine sequences of the considered chromosomal DNAs of human 

and the plant Arabidopsis thaliana. In both cases, fractal dichotomous trees arise when 

these DNAs are analyzed by the NIH method. The above-formulated rule of the 

complementarity of percent values of complementary RY-n-plets holds in this 

chromosomal DNA as well. Again, each of the members of these parental fractal trees 

of probabilities serves as a top of its own dichotomous fractal tree by analogy with the 

example in Fig. 28. 

 

- 8.4. Suffix dichotomies of percentages of n-plets in the purine-pyrimidine 

sequence of DNA of bacteria Bradyrhizobium japonicum 

 

Table 6 shows percent values of RY-n-plets in the RY-sequence of the genomic 

DNA of bacteria Bradyrhizobium japonicum strain E109 (complete genome, 9224208 

bp) were taken from 

https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank.  

 

Table 6. Phenomenological percent values of each of the n-plets of purines and 

pyrimidines in corresponding binary RY-n-plets representations of the DNA of the 

bacteria  Bradyrhizobium japonicum strain E109 (complete genome, 9224208 bp, 

https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank) for n = 1, 2, 3, 4, 

5). Its RY-sequence contains about 9 million of purines “r” and pyrimidines “y”. Those 

RY-n-plets, which start with a purine, having 2 rings in its molecule, are in red; those 

RY-n-plets, which start with a pyrimidine, having 1 ring in its molecule, are in blue. 

 

%r %y   %rr %ry %yr %yy 

0,5000906 0,4999094   0,2381742 0,2619759 0,2618571 0,237993 

 

%rrr %rry %ryr %ryy %yrr %yry %yyr %yyy 
0,1053186 0,1337926 0,1281957 0,1333 0,132985 0,128823 0,132246 0,105339 

 

%rrrr %rrry %rryr %rryy %ryrr %ryry %ryyr %ryyy 
0,050271 0,055102 0,069618 0,06323 0,06575 0,06313 0,07791 0,05492 

%yrrr %yrry %yryr %yryy %yyrr %yyry %yyyr %yyyy 
0,0550352 0,0779818 0,0591747 0,069701 0,067073 0,066027 0,055119 0,04996 

 

https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank
https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank


        

 

 

%yyyyy %yyyyr %yyyry %yyyrr %yyryy %yyryr %yyrry %yyrrr 
0,0229293 0,026877 0,0276951 0,027704 0,03519 0,03093 0,039223 0,027856 

%yryyy %yryyr %yryry %yryrr %yrryy %yrryr %yrrry %yrrrr 
0,0275113 0,041965 0,0284052 0,030842 0,03559 0,04211 0,027917 0,027178 

%ryyyy %ryyyr %ryyry %ryyrr %ryryy %ryryr %ryrry %ryrrr 
0,0270928 0,028181 0,0382244 0,039463 0,03465 0,02830 0,038485 0,027383 

%rryyy %rryyr %rryry %rryrr %rrryy %rrryr %rrrry %rrrrr 
0,0275145 0,035808 0,0346837 0,035141 0,02750 0,02763 0,027044 0,022984 

 

       Analysis of the phenomenological data in Table 6 reveals again the following: the 

percentage of any RY-n-plet is practically equal to the sum of percentages of those two 

RY-(n+1)-plets, which are generated from this RY-n-plet by addition to it the suffixes 

r and y. Fig. 41 shows corresponding fractal dichotomic percentage trees in the case of 

this bacterial genomic DNA. 

 

 

∑ % 

Percentage of RY-n-plets 

starting with purine “r” 

Percentage of RY-n-plets 

starting with pyrimidine “y” 

 

∑ % 
0,50009 %r %y 0,49991 

0,50015 %ry+%rr %yy+%yr 0,49985 

0,50061 %ryy+%ryr+%rry+%rrr %yyy+%yyr+%yry+%yrr 0,49939 

 

0,49993 

%ryyy+%ryyr+%ryry+%ryrr 

+%rryy+%rryr+%rrry+%rrrr 

%yyyy+%yyyr+%yyry+%yyrr 

+%yryy+ %yryr+%yrry+%yrrr 0,50007 

 

0,50008 

%ryyyy+%ryyyr+%ryyry+ 

%ryyrr+%ryryy+%ryryr+ 

%ryrry+%ryrrr+%rryyy+ 

%ryyyr+%rryry+%rryrr+ 

%rrryy+%rrryr+%rrrry+%rrrrr 

%yyyyy+%yyyyr+%yyyry+ 

%yyyrr+%yyryy+%yyryr+ 

%yyrry+%yyrrr+%yryyy+ 

%yryyr +%yryry+%yryrr+ 

%yrryy+%yrryr+%yrrry+%yrrrr 

 

0,49992 

 

Fig. 41. The beginning of the fractal dichotomic percentage trees of n-plets of purines 

(r) and pyrimidines (y), which is based on the algorithm of the suffix dichotomy in the 

case of genomic DNA of the bacteria Bradyrhizobium japonicum strain E109. Rounded 

numeric data of percentages are taken from Table 6. The left and the right columns 

present a practical invariance of sums of percentages of even (red) and odd (blue) RY-

n-plets at all the levels. 

 

Comparison of Figs. 37, 40, and 41 shows the similarity of stochastic organization of 

binary purine-pyrimidine sequences of the considered genomic DNAs. Fractal 

dichotomous trees arise systematically when these DNAs are analyzed by the NIH 

method. The above-formulated rule of the complementarity of percent values of 

complementary RY-n-plets holds in this bacterial genomic DNA as well. Again, each 

of the members of these parental fractal trees of probabilities serves as a top of its own 

dichotomous fractal tree by analogy with the example in Fig. 28. 

  

 

9. Universal algorithms for dichotomies of probabilities in keto-amino 

sequences of genomic DNAs 

 

Now let us turn to the third binary sub-alphabet of DNA based on the binary 

opposition “keto-vs-amino”. A pair of nucleotides G and T contains a keto group 

and are designated on this basis in genetics by the generally accepted symbol K, 



        

 

 

and another pair of nucleotides A and C contains an amino group and are designated 

on this basis by the symbol M. The keto group is characterized by the presence of 

a molecular bond of carbon and oxygen C=O , and the amino group - by the 

presence of a molecular bond of carbon and oxygen with hydrogen C-OH. The 

serial number of oxygens in the periodic table of Mendeleev is equal to the even 

number of protons 8, and the number of protons in the amino group OH is equal to 

the odd number 9. Therefore, if desired, we can say that the binary sequences of 

keto and amino groups in single-stranded DNA are conditionally binary sequences 

of even and odd numbers 8 and 9. Below we are presenting a few results of study 

of sequences of keto- and amino-groups on the DNAs of human chromosome № 1, 

chromosome № 1 of the plant Arabidopsis thaliana and the bacteria 

Bradyrhizobium japonicum (just these DNAs have been used above as examples 

for the demonstration of dichotomic fractal trees in cases H-n-plets and RY-n-plets). 

 

- 9.1. Suffix dichotomies of percentages of n-plets in the keto-amino sequence  

             of DNA of human chromosome № 1 

 

Table 7 shows percent values of n-plets in the binary sequence of keto- and amino-

groups (or keto- and amino-indicators) in DNA of human chromosome № 1 with the 

HBS-method. Such binary sequences revealed with HBS-method are denoted as KM-

sequences. 

 

 Table 7. Phenomenological percent values of each of the n-plets of keto-groups 

(K) and amino-groups (M) in corresponding binary KM-n-plets representations of the 

single-stranded DNA of human chromosome № 1 (n = 1, 2, 3, 4, 5). Its KM-sequence 

contains about 250 million keto-indicators “K” and amino-indicators “M”. Initial data 

on this chromosome were taken from the GenBank: 

https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11. Those KM-n-plets, which start 

with the keto-group are in red; those RY-n-plets, which start with the amino-group, are 

in blue. 

 

 
 

https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11


        

 

 

Analysis of the phenomenological data in Table 7 confirms the principle of 

percentage dichotomies of KM-n-plets in this human chromosomal DNA. Fig. 42 

shows corresponding dichotomic fractal trees, which are very similar to the dichotomic 

fractal trees in the case of n-plets of purines and pyrimidines in Fig. 37.  

 

 

∑ % 

Percentage of KM-n-plets 

starting with K 

Percentage of KM-n-plets 

starting with M 

 

∑ % 

0,50050 %K %M 0,49950 

0,500502 %KM+%KK %MM+%MK 0,499498 

0,500526 %KMM+%KMK+ 

           %KKM+%KKK 

%MMM+%MMK+ 

%MKM+%MKK 
0,499474 

 

0,500480 

%KMMM+%KMMK+ 

%KMKM+%KMKK+ 

%KKMM+%KKMK+ 

%KKKM+%KKKK 

%MMMM+%MMMK+ 

        %MMKM+%MMKK+ 

%MKMM+ %MKMK+ 

        %MKKM+%MKKK 

 

0,499520 

 

0,500485 

%KMMMM+%KMMMK+ 

%KMMKM+%KMMKK+ 

%KMKMM+%KMKMK+ 

%KMKKM+%KMKKK+ 

%KKMMM+%KMMMK+ 

%KKMKM+%KKMKK+ 

%KKKMM+%KKKMK+ 

%KKKKM+%KKKKK 

%MMMMM+%MMMMK+ 

%MMMKM+%MMMKK+ 

%MMKMM+%MMKMK+ 

     %MMKKM+%MMKKK+ 

%MKMMM+%MKMMK+ 

%MKMKM+%MKMKK+ 

%MKKMM+%MKKMK+ 

      %MKKKM+%MKKKK 

 

0,499515 

 

 
 

Fig. 42. At the top: the beginning of the fractal dichotomic percentage trees of n-plets 

of keto (K) and amino (M), which is based on the algorithm of the suffix dichotomy in 

the case of DNA of human chromosome № 1. Rounded numeric data of percentages 

are taken from Table 7. The left and the right columns present a practical invariance of 

sums of percentages of even and odd KM-n-plets at all the levels. At the bottom: the 

diagram of comparative percent values at different levels of these fractal trees. At each 

level, lengths of intervals are proportional to percent values of corresponding KM-n-

plets from Table 7. The nth level contains percent values of 2n KM-n-plets. The total 

length of the strip of each layer corresponds to the summary value 1,0 of the percentages 

of its KM-n-plets. The relations of dichotomies between the lengths of the 

corresponding intervals at neighboring levels are visible. 

 

 The left and right halves of the percent diagram in Fig. 42 are mirror-

symmetrical each to another from the point of view of width of their intervals. It is 

connected with the fulfillment of the rule of the practical equality of percent values in 

complementary KM-n-plets in binary KM-n-sequences of the genomic DNA by 

analogy with the above-described case of n-plets of purines and pyrimidines. According 

the author's results of analysis of the named set of genomic DNAs, this rule is a general 



        

 

 

for all tested genomes and now is a candidacy to be an universal genomic rule (like a 

similar rule for RY-n-plets considered above). 

       Again, each of the members of these parental fractal trees of probabilities (fig. 42) 

serves as a top of its own dichotomous fractal tree by analogy with the example in Fig. 

28. 

 

- 9.2. Suffix dichotomies of percentages of n-plets in the keto-amino sequence  

             of DNA of chromosome № 1 of the plant Arabidopsis thaliana 

 

 Table 8 shows percent values of n-plets in the binary KM-sequence of keto- and 

amino-groups in DNA of chromosome № 1 of the plant.  

 

 

 Table 8. Phenomenological percent values of each of the n-plets of keto-groups 

(K) and amino-groups (M) in corresponding binary KM-n-plets representations of the 

single-stranded DNA of chromosome № 1 of the plant Arabidopsis thaliana (n = 1, 2, 

3, 4, 5). Initial data on this chromosome were taken from the GenBank: 

https://www.ncbi.nlm.nih.gov/genome/4. Those KM-n-plets, which start with the keto-

indicator K, are in red; those KM-n-plets, which start with the amino-indicator M, are 

in blue. 

 

 
 

 Analysis of the phenomenological data in Table 8 reveals the similar situation 

with percent dichotomies in this chromosomal DNA of the plant: the percentage of any 

KM-n-plet is practically equal to the sum of percentages of those two KM-(n+1)-plets, 

which are generated from this KM-n-plet by addition to it the suffixes K and M. Fig. 

43 shows corresponding dichotomic fractal trees of percentage of KM-plets. The rule 

of practical equality of percent values of complementary KM-n-plets in binary KM-n-

sequences holds for this plant chromosomal DNA as well. 

 

 

 



        

 

 

 

∑ % 

Percentage of KM-n-plets 

starting with K 

Percentage of KM-n-plets 

starting with M 

 

∑ % 

0,499557 %K %M 0,500443 

0,499623 %KM+%KK %MM+%MK 0,500377 

0,499358 %KMM+%KMK+ 

           %KKM+%KKK 

%MMM+%MMK+ 

%MKM+%MKK 
0,500642 

 

0,499677 

%KMMM+%KMMK+ 

%KMKM+%KMKK+ 

%KKMM+%KKMK+ 

%KKKM+%KKKK 

%MMMM+%MMMK+ 

        %MMKM+%MMKK+ 

%MKMM+ %MKMK+ 

        %MKKM+%MKKK 

 

0,500323 

 

0,49941 

%KMMMM+%KMMMK+ 

%KMMKM+%KMMKK+ 

%KMKMM+%KMKMK+ 

%KMKKM+%KMKKK+ 

%KKMMM+%KMMMK+ 

%KKMKM+%KKMKK+ 

%KKKMM+%KKKMK+ 

%KKKKM+%KKKKK 

%MMMMM+%MMMMK+ 

%MMMKM+%MMMKK+ 

%MMKMM+%MMKMK+ 

     %MMKKM+%MMKKK+ 

%MKMMM+%MKMMK+ 

%MKMKM+%MKMKK+ 

%MKKMM+%MKKMK+ 

      %MKKKM+%MKKKK 

 

0,50059 

 

Fig. 43. The beginning of the fractal dichotomic percentage trees of n-plets of keto (K) 

and amino (M), which is based on the algorithm of the suffix dichotomy in the case of 

DNA of chromosome № 1 of the plant Arabidopsis thaliana. Rounded numeric data of 

percentages are taken from Table 8. The left and the right columns present a practical 

invariance of sums of percentages of red and blue KM-n-plets at all the levels. 

The rule of the practical equality of percent values in complementary KM-n-plets in 

binary KM-n-sequences of this chromosomal DNA holds as well. Again, each of the 

members of these parental fractal trees of probabilities serves as a top of its own 

dichotomous fractal tree by analogy with the example in Fig. 28. 

 

- 9.3. Suffix dichotomies of percentages of n-plets in the keto-amino sequence  

             of the genomic DNA of the bacteria Bradyrhizobium japonicum 

 

Table 9 shows percent values of n-plets in the binary KM-sequence of keto- and 

amino-groups in the genomic DNA of the bacteria Bradyrhizobium japonicum  

 

Table 9. Phenomenological percent values of each of the n-plets of keto-groups 

(K) and amino-groups (M) in corresponding binary KM-n-plets representations of the 

single-stranded genomic DNA of the bacteria  Bradyrhizobium japonicum strain E109 

(complete genome, 9224208 bp, 

https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank) for n = 1, 2, 3, 4, 

5. Those KM-n-plets, which start with the keto nucleotides, are in red; those RY-n-

plets, which start with the amino-nucleotides, are in blue. 

https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank


        

 

 

 
 

 Analysis of the phenomenological data in Table 9 reveals the similar situation 

with percent dichotomies in this bacterial genomic DNA: the percentage of any KM-n-

plet is practically equal to the sum of percentages of those two KM-(n+1)-plets, which 

are generated from this KM-n-plet by addition to it the suffixes K and M. Fig. 44 shows 

corresponding dichotomic fractal trees of percentage of KM-plets. The rule of practical 

equality of percent values of complementary KM-n-plets in binary KM-n-sequences 

holds for this bacterial genomic DNA as well. 

 

 

∑ % 

Percentage of KM-n-plets 

starting with K 

Percentage of KM-n-plets 

starting with M 

 

∑ % 

0,5004998 %K %M 0,4995002 

0,499574 %KM+%KK %MM+%MK 0,500426 

0,4997379 %KMM+%KMK+ 

%KKM+%KKK 

%MMM+%MMK+ 

%MKM+%MKK 0,5002621 

0,5000004 %KMMM+%KMMK+ 

%KMKM+%KMKK+ 

%KKMM+%KKMK+ 

      %KKKM+%KKKK 

%MMMM+%MMMK+ 

%MMKM+%MMKK+ 

%MKMM+ %MKMK+ 

      %MKKM+%MKKK 

0,4999996 

0,5004052 %KMMMM+%KMMMK+ 

%KMMKM+%KMMKK+ 

%KMKMM+%KMKMK+ 

%KMKKM+%KMKKK+ 

 %KKMMM+%KMMMK+ 

%KKMKM+%KKMKK+ 

%KKKMM+%KKKMK+ 

   %KKKKM+%KKKKK 

%MMMMM+%MMMMK+ 

%MMMKM+%MMMKK+ 

%MMKMM+%MMKMK+ 

%MMKKM+%MMKKK+ 

 %MKMMM+%MKMMK+ 

%MKMKM+%MKMKK+ 

%MKKMM+%MKKMK+ 

    %MKKKM+%MKKKK 

0,4995948 

 

     Fig. 44. The beginning of the fractal dichotomic percentage trees of n-plets of keto 

(K) and amino (M), which is based on the algorithm of the suffix dichotomy in the 

considered case of DNA of the bacteria Bradyrhizobium japonicum strain E109. 



        

 

 

Rounded numeric data of percentages are taken from Table 9. The left and the right 

columns present a practical invariance of sums of percentages of red and blue KM-n-

plets at all the levels. 

 

      Again, each of the members of these parental fractal trees of probabilities serves as 

a top of its own dichotomous fractal tree by analogy with the example in Fig. 28. 

 

10. Parallelism between dichotomies in inherited biological bodies and 

universal dichotomies of probabilities in stochastic organization of 

genomic DNAs 

 

The described results give pieces of evidence about existence of universal rules of 

dichotomies of probabilities (percentages) in stochastic organization of genomic DNAs 

of higher and lower organisms. These rules lead to existence of a wide set of dichotomic 

fractal trees of probabilities for cases of different modalities (for the binary oppositions 

of "strong and weak hydrogen bonds", "purine and pyrimidine", "keto and amino"). 

These basic or "parental" fractal trees of probabilities include their “daughter” fractal 

dichotomic trees of probabilities since each of their percentage members serves as a top 

of its own dichotomic fractal tree of probabilities as it is shown above. 

Genomic informatics turns out to be associated with networks of many 

interconnected fractal trees of dichotomies of probabilities in genomic DNAs. 

Accordingly, for example, the genomic percentage of each triplet of nucleotides turns 

out to be simultaneously a member of many described dichotomy trees of probabilities 

existing in any genomic DNA. 

 The described universal rules of dichotomies of probabilities in genomic DNAs 

have been discovered on the basis of the author’s method of hierarchical binary 

stochastics (HBS-method), which represents any genomic DNA as a multi-level 

hierarchical set of stochastic sequences of n-plets, where each of the text-like sequences 

uses the corresponding n-plets alphabet containing 2n-members. Such representation 

resembles traditional Russian dolls “Matryoshka” based on the hierarchical nesting of 

objects of different sizes into each other (Fig. 45). In the light of this analogy, the 

author's HBS-method can also be simplistically called “the stochastic matryoshka 

method”. 

 
 

Fig. 45. The example of the Russian dolls “Matryoshka” (from 

https://en.wikipedia.org/wiki/Matryoshka_doll#/media/File:Russian-Matroshka.jpg;  

permission is granted to copy, distribute and/or modify this document under the terms 

of the GNU Free Documentation License). 

 

The noted universal rules of dichotomies of probabilities of different modalities 

in genomic DNAs testify to the existence of non-trivial algebraic invariants of a global 

genomic nature, which remain unchanged over billions of years of biological evolution, 

during which millions of species of organisms die off and new ones arise (although 

https://en.wikipedia.org/wiki/Matryoshka_doll#/media/File:Russian-Matroshka.jpg
https://en.wikipedia.org/wiki/en:GNU_Free_Documentation_License


        

 

 

locally genomic sequences are changed by mutations, the pressure of natural selection, 

etc.). 

Dichotomies in genetically inherited biological bodies and their transformations 

are well known. Their examples give, for example, the functioning of double-stranded 

DNA; mitosis of somatic cells; branching in plants; the bronchial tree of the human 

lungs with its 23 levels of dichotomies (there are approximately 223 = 8,388,608 alveoli 

at the end of the bronchial tree branches [Medvedev, 2020]; dichotomous branching of 

neuronal axons and dendrites (there are no branching for three, four, five, and so on 

[Tsang, 2016, p.235]).  Presented in Figs. 25 and 31, asymmetric pairs from the left and 

right dichotomous trees, which are connected with even and odd numbers 2 and 3, are 

associated with two genetically inherited asymmetric cerebral hemispheres endowed 

with different functions. The Yin-Yang theme (left and right, even and odd, feminine 

and masculine) that is cross-cutting for biology and culture is systematized in a well-

known book published in different languages with the characteristic title “Even and 

Odd. Asymmetry of the brain and sign systems” [Ivanov, 1978]. This feature of the 

dichotomy of percentages of hydrogen bonds 2 and in genomic DNA allows us to recall 

some historical facts that, for example, in ancient China, the numbers 2 and 3 were 

considered the numbers of Yin and Yang (or female and male numbers) and also as 

numbers of the Earth and the Sky; these numbers served as the basis of ancient Chinese 

arithmetic.  

But in genomic DNAs, in contrast to bodily biostructures, we encounter a 

fundamentally different type of dichotomy: the dichotomies of stochastic (probabilistic) 

characteristics in DNA information sequences. The vast dichotomous fractal networks 

of genomic DNA probabilities are the soil from which living bodies and genetic 

intelligence grow. The material structures of living bodies do not arise from scratch, 

but have structural prototypes in a regular system of biological probabilities in a variety 

of genetic languages with their families of 2n-parameter alphabets. Here it should be 

recalled that genetics as a science began with the discovery by Mendel of the rules of 

stochastic (probabilistic) inheritance of traits in experiments on crossing organisms. 

Many processes in living bodies are stochastic. Even genetically identical cells in the 

same tissue have different levels of protein expression, different sizes and structure due 

to the stochastic nature of the energy interaction of individual molecules in cells. The 

stochastic nature of the inheritance of traits in the "small scale" is fundamentally 

different from the deterministic inheritance of traits in the "large scale". For example, 

the fingerprints of the fingertips are different for all people, despite the fact that the 

fingers as a whole are determined with their shapes and structures (3 phalanges, etc.). 

Thus, biological phenomena are associated with the dualism "stochastics-

determinism". 

According to Mendel's law of independent inheritance of traits, information 

from the level of DNA molecules are reflected in the macrostructure of living bodies 

through many independent channels despite strong noise. Thus, the colors of hair, eyes 

and skin are inherited independently of each other. Accordingly, each organism is a 

multi-channel noise-immune coding machine. The author believes that the future of 

biology is connected with the study of a deep and regular structured system of 

probabilities in the world of stochastic energies of interaction in material media. 

One of the interesting areas of future research is the analysis of the relationship 

between the traditionally studied dichotomous fractals in the configurations of 

biological bodies and the above-described dichotomous percentage fractals in the 

stochastic (probabilistic) organization of genomic DNA. Fractals (or fractal-like 

structures) in the configurations of biological bodies is studied long ago, in particular, 



        

 

 

in connection with cancer, and is presented, for example, in the works [Pellionisz, 1989; 

Pellionisz et al., 2013; Werner, 2010]. The book [Tsang, 2016], which has the 

characteristic title "Fractal Brain Theory", contains rich material on biological fractals, 

including literary references to thematic publications of various authors. 

Revealing the universal rules of stochastic dichotomies in genomes allows us to 

rethink the phenomena of dichotomies in the inherited structures of biological bodies. 

Life on Earth has existed for at least 3.5 billion years, and all this time the genetics of 

organisms and the genetically inherited organisms themselves are built on a dichotomy.  

For example, over the course of billions of years of life on Earth, it is typical for bacteria 

and prokaryotes in general to reproduce by dichotomous division of the body into two 

halves. What are the structural foundations for this “eternal” dichotomous phenomenon 

of bacterial reproduction, which is accompanied by the most complex processes of 

dichotomous separation of all dichotomously organized genetic information, together 

with the accompanying multi-species protein and nucleic assemblies inside a bacterial 

cell? 

The author suggests the following possible answer to such questions. There is a 

world of families of probabilities, hidden from direct perception and structured on the 

basis of binary oppositions (like Yin-Yang), reminiscent, in particular, of binary 

oppositions in physics: positive and negative electric charges, the north and south poles 

of magnets, the forces of attraction and repulsion, etc. It is in the image and likeness of 

the binary organized families of probabilities of this world that genetically inherited 

biological bodies are built. Figuratively speaking, our bodies are clothes put on these 

binary structured families of probabilities, which act as prototypes of biological 

structures and are endowed with their own forms of energy. To a certain extent, this is 

similar to the situation with the invisible man from the novel “The invisible man” by 

H.G. Wells, whose invisible figure becomes definable only when he is wearing clothes. 

It is also reminiscent of the ancient concepts of the manifested and the non-manifested 

worlds, and Plato's famous allegory of the world of ideas and the shadows on the cave 

wall, by which people living in a cave can judge the true hidden world of ideas. By 

studying the universal rules of genomic DNAs, we indirectly research the rules of this 

hidden world of binary families of probabilities, which is the progenitor of biological 

structures with their amazing properties. 

The idea of the regular world of stochastic energy processes as the basis of 

inherited biological structures is important, among other things, for understanding 

genetic intelligence. By genetic intelligence, we mean that part of the intellectual 

potency of living organisms that allows, on the basis of genetic information in DNA 

and RNA molecules, to build, for example, from one fertilized cell an organism with 

trillions of cells in such a way that parental characteristics are reproduced in it in a 

multichannel noise-resistant manner, despite strong noises and constantly changing 

conditions of food and external influences in the course of life. In this case, we are 

talking about a systematic growth - in the course of ontogenesis - of the number of body 

parameters and a corresponding increase in the dimension of its configuration space of 

states [Petoukhov, 2022c]. This approach echoes the following opinion about the 

activity of the brain by R. Kurzweil, a well-known artificial intelligence specialist: the 

brain is a probabilistic recursive fractal that seems extremely complex, but in fact it 

may turn out to be much simpler than it seems [Tsang, 2016, p. 50]. 

With the development of physics and the emergence of quantum mechanics, 

people drew attention to the fundamental importance of the world of probabilities for 

understanding and modeling the objects and processes of the environment that they see. 

The described algebra-genetic studies complement the theme of the importance of the 



        

 

 

world of probabilities. The presented studies are consonant with the works of V. 

Nalimov (https://en.wikipedia.org/wiki/Vasily_Nalimov), who considered it his goal to 

build a probabilistic model of the language, and then of consciousness in general 

[Nalimov, 2015].  

According to the results available to the author, the HBS-method (or the 

stochastic matryoshka method) is useful for the knowledge and comparative analysis 

of not only long genomic DNAs, but also relatively short DNAs of genes, in which the 

dichotomies of percentages inside of sets of n-plets  are violated. It allows you to 

characterize the DNAs of each genome and each gene, figuratively speaking, with its 

individual the “fingerprint” of the stochastic organization of its binary representations 

and, in this regard, assign the DNA and RNA of each genome and each gene an 

individual “polyplet stochastic passport”. Such a polyplet stochastic certification of 

genetic sequences seems to be useful for revealing the relations of structural 

relationship of various genetic sequences. 

This HBS-method is also useful for the development of “binary-stochastic 

rhythmology” due to the fact that many physiological rhythms, upon closer 

examination, are associated with binary sequences and stochastic fluctuations in them 

due to the stochastics of energy interactions in molecular media. For example, 

sequences of cardiac pulsations are characterized by stochastic fluctuations of cardio-

intervals in them. These fluctuations of cardio-intervals, which have a diagnostic value, 

can be investigated by the named method in order to identify stochastic regularities 

such as dichotomies of the probabilities of the corresponding n-plets in their binary 

representations. In general, the named author's method of DNA sequence analysis leads 

to new useful approaches for the development of evolutionary biology and personal 

genetics, as well as various branches of physiotherapy, pharmacology, art therapy and 

medical engineering. In particular, it has been successfully applied by the author in the 

analysis of the stochastic organization of long phonetic sequences of the Russian 

language (that is, sequences of sounds of four types - short and long vowels, voiceless 

and voiced consonants) on the material of volumetric texts of novels by A.N. Tolstoy, 

F.M. Dostoevsky, A.S. Pushkin, the Russian text of the Bible, etc. [Petoukhov, 2020a]. 

On this path of understanding the biological significance of polyplet stochastic 

regularities, new algebraic formalisms are introduced into genetic and physiological 

analysis, including formalisms of matrix genetics, metric analysis, quantum 

informatics, algebraic geometry, resonance theory, and antenna array theory 

[Petoukhov, 2008, 2018, 2021c, 2022b].  

 

11. Regarding analysis of DNAs of genes with the HBS-method 

 

Sequences of genomic DNAs consist of genes and fragments (introns) that do not code 

for proteins. For example, it is currently believed that there are 4234 genes on the 

human chromosome № 1, which are associated with 890 genetic diseases, including 

Alzheimer's disease, Parkinson's disease, glaucoma, breast and prostate cancer, etc. The 

total length of the sequences of these genes is only a small part of this chromosomal 

DNA, the rest of it is occupied by introns. 

Since, as shown above, the application of the HBS-method (or the method of 

stochastic matryoshkas) to the analysis of genomic DNA yields important results, it is 

logical to apply it to the analysis of the constituent parts of genomic DNA, that is, to 

the analysis of genes and introns. In this section, we provide only one illustrative 

example of the application of this perspective method to gene analysis for revealing 

https://en.wikipedia.org/wiki/Vasily_Nalimov


        

 

 

hidden rules and symmetries in stochastic organization of genetic sequences. For 

brevity, this analysis is called HBS-analysis. 

 

 Let us first consider the human TTN gene, having 81940 bp and encoding the 

protein Titin, which is the largest protein in humans. Titin, also known as connectin, is 

important in the contraction of striated muscle tissues. The length of the DNA sequence 

of this longest gene is about 3000 times shorter than the length of the DNA sequence 

of the human chromosome № 1 analyzed above (Table 1). But surprisingly, the sets of 

percentages of n-plets in this highly truncated DNA obey practically the same (except 

for the case n=3) rules for the dichotomous interconnections of percentages of n-plets 

with different values n in the binary representations of the DNA.  

 

- 11.1. The HBS-analysis of the sequence of hydrogen bonds in the gene TTN 

 

We begin with HBS-analysis of the binary representation of DNA of the gene TTN in 

a form of its H-plets sequence of hydrogen bonds 2 and 3 (by analogy with Table 1). 

Table 10 shows percent values of n-plets of hydrogen bonds in this binary sequence. 

 

Table 10. Phenomenological percent values of each of the H-n-plets in the 

corresponding H-plets sequence of the DNA of the gene TTN (n = 1, 2, 3, 4, 5). Its H-

sequence contains about 81940 digits 2 and 3. Initial data on this chromosome were 

taken from the GenBank: https://www.ncbi.nlm.nih.gov/nuccore/X90568.1. Even H-n-

plets starting with an even number 2 are in red, and odd H-n-plets starting with an odd 

number 3 are in blue. 

 

%2 %3   %22 %23 %32 %33 

0,560679 0,439321   0,284672 0,276983 0,275031 0,163315 

 

%222 %223 %232 %233 %322 %323 %332 %333 
0,156665 0,106469 0,134954 0,072054 0,185626 0,130377 0,155494 0,05836 

 

%2222 %2223 %2232 %2233 %2322 %2323 %2332 %2333 
0,160672 0,090685 0,100824 0,050154 0,100737 0,056957 0,056027 0,025264 

%3222 %3223 %3232 %3233 %3322 %3323 %3332 %3333 
0,090644 0,060129 0,056975 0,031122 0,050243 0,030993 0,025347 0,013226 

 

%22222 %2223 %22232 %22233 %22322 %22323 %22332 %22333 
0,038626 0,03887 0,044179 0,023798 0,04332 0,041555 0,036063 0,017818 

%23222 %23223 %23232 %23233 %23322 %23323 %23332 %23333 
0,044179 0,044667 0,051501 0,03112 0,03417 0,036795 0,023005 0,013608 

%32222 %32223 %32232 %32233 %32322 %32323 %32332 %32333 

0,038199 0,031731 0,04009 0,027825 0,04406 0,039114 0,0371 0,018672 

%33222 %33223 %33232 %33233 %33322 %33323 %33332 %33333 

0,024652 0,024286 0,030815 0,025812 0,01733 0,018977 0,010923 0,007139 

 

First of all, analysis of the phenomenological data in Table 10 reveals the 

following suffix dichotomous interconnections between presented probabilities of H-

n-plets in the case of the gene TTN. The percentage of any H-monoplet is practically 

equal to the sum of percentages of those H-duplets, which are generated from this H-

https://www.ncbi.nlm.nih.gov/nuccore/X90568.1


        

 

 

monoplet by addition of the suffixes 2 and 3 to it, for example, %2 ≈ %22+%23. The 

percentage of any H-tetraplet is practically equal to the sum of those H-pentaplets, 

which are generated from it by addition of the suffixes 2 and 3 to it, for example, %2222 

≈ %22222+%2223. Fig. 46 shows these percentage dichotomous interconnections in 

detail with rounded percent values.  

  

Suffix dichotomies between percentages of H-monoplets and H-duplets: 

 

%2=0,561 ≈ %22+%23=0,562;          %3=0,439 ≈ %32+%33=0,438 

 

Suffix dichotomies between percentages of H-tetraplets H-pentaplets: 

 

%2222=0,077 ≈ %22222+%22223=0,077; 

%2223=0,068 ≈ %22232+%22233=0,068; 

%2232=0,088 ≈ %22322+%22323=0,085; 

%2233=0,054 ≈ %22332+%22333=0,054; 

%2322=0,087 ≈ %23222+%23223=0,089;  

%2323=0,081 ≈ %23232+%23233=0,083; 

%2332=0,072 ≈ %23322+%23323=0,071; 

%2333=0,035 ≈ %23332+%23333=0,037; 

%3222=0,068 ≈ %32222+%32223=0,070; 

%3223=0,070 ≈ %32232+%32233=0,068; 

%3232=0,083 ≈ %32322+%32323=0,083; 

 %3233=0,054 ≈ %32332+%32333=0,056;  

%3322=0,052 ≈ %33222+%33223=0,049; 

%3323=0,059 ≈ %33232+%33233=0,057; 

%3332=0,033 ≈ %33322+%33323=0,036; 

%3333=0,020 ≈ %33332+%33333=0,018 

 

Fig. 46. Dichotomous interconnections between percent values of H-n-plets with n=1 

and n=2, and also with n=4 and n=5 for the gene of the human longest protein Titin in 

the case of the suffix dichotomies. Percentage values are taken from Table 10 and 

rounded to the third decimal place. In each of the 18 shown equations, percent values, 

in the left side and in the right side of the equation are practically coincide each other. 

These values are marked by bold numbers. 

 

 

But for the case n=3, that is, for the shown percentage set of H-triplets, its 

dichotomous interconnections with neighboring percentage sequences of H-duplets and 

H-tetraplets are significantly disturbed in the considered TTN gene. One can recall here 

that nucleotide triplets encode amino acids of proteins.  

By analogy with the dichotomy trees of the percentages of H-n-plets in genomic 

DNAs shown in Fig. 25, it is possible to construct a tree of percentages of n-plets of 

hydrogen bonds 2 and 3 for the DNA of the analyzed gene. Fig. 47 shows that at n=3 

there is a significant violation of the dichotomy interconnections rule with the percent 

values of n-plets of neighboring levels (n = 2 and n = 4). 

 

 

 



        

 

 

  ∑% Percentage of H-n-plets 

starting with 2 

Percentage of H-n-plets 

starting with 3 

  ∑% 

0,561 %2 %3 0,439 

0,562 %23+%22 %33+%32 0,438 

0,470 %233+%232+%223+%222 %333+%332+%323+%322 0,530 

 

0,562 

%2333+%2332+%2323+ 

%2322+%2233+%2232+ 

%2223+%2222 

%3333+%3332+%3323+ 

%3322+%3233+ %3232+ 

%3223+%3222 

 

0,438 

 

 

0,563 

%23333+%23332+%23323+ 

%23322+%23233+%23232+ 

%23223+%23222+%22333+ 

%23332+%22323+%22322+ 

%22233+%22232+%22223+ 

%22222 

%33333+%33332+%33323+ 

%33322+%33233+%33232+ 

%33223+%33222+%32333+ 

%32332 +%32323+%32322+ 

%32233+%32232+%32223+ 

%32222 

 

0,437 

 

 

 
 

Fig. 47. At the top: numeric demonstration of the partial preservation of the dichotomy 

rule in the interconnections of the percentage sets of H-n-plets in the DNA of the gene 

TTN at n = 1, 2, 4, 5 (the left and the right columns present a practical invariance of 

sums of percentages of even and odd H-n-plets at these levels). In the case n=3, the 

sequence of H-triplets gives a violation of this rule (marked in yellow). Rounded 

numeric data of percentages are taken from Table 10. Compare with Fig. 25 of 

undisturbed dichotomous tree of percent H-n-plets in the case of the genomic DNA. 

At the bottom: the diagram of comparative percent values at different levels of these 

trees. At each level “n”, lengths of intervals are proportional to percent values of 

corresponding H-n-plets from Table 10. 

 

           The case of the prefix dichotomies gives analogical results regarding 

percentages of H-n-plets in the gene.  

 In genomic DNAs, the rule of percentage equalities in the set of genomic H-n-

plets holds (see above section 7.1.1 about DNA of human chromosome № 1): those two 

H-n-plets, which are read as mirror (or reversed) copies of each another (such as 223 

and 322), always have almost the same percent values in the genomic H-n-plets 

sequence. This rule holds as well for studied cases n = 2, 4, 5 in the analyzed gene TTN 

though the length of its sequence is about 3000 times shorter than the length of the 

DNA sequence of the human chromosome No. 1. Fig. 48 shows numerical data 

confirming this. 

 

n = 2 %23=0,277 ≈ %32=0,275 

 

n = 4 

%2223=0,0678 ≈ %3222=0,0677 

%2232=0,088 ≈ %2322=0,087 

%2333=0,035 ≈  %3332=0,033 



        

 

 

 

 

Fig. 48. The numeric confirmation of the rule of percentage equalities for pairs of 

reversed H-n-plets in the gene TTN for cases of n = 2, 4, 5. Rounded numeric data of 

percentages are taken from Table 10. 

 

But for the case of n = 3, that is for the percentage sequence of H-triplets in the 

gene, this rule of percentage equalities is disturbed since this sequence has expressed 

percentages inequalities: %223=0,106 ≠  %322=0,186 and %233=0,072 ≠ 

%332=0,155. The reasons for such very special status of H-triplets sequence in the gene 

should be studied in the future. 

 

- 11.2. The HBS-analysis of the purine-pyrimidine sequence of the gene TTN 

 

Let us turn now to analysis of the DNA purine-pyrimidine sequence of the gene TTN 

of the human longest protein Titin. Table 11 shows percent values of n-plets of purines 

(r) and pyrimidines (y) in single-stranded DNA of this gene. 

 

Table 11. Phenomenological percent values of each of the RY-n-plets in the 

corresponding n-plets sequence of purines (r) and pyrimidines (y) of the single-stranded 

DNA of the gene TTN (n = 1, 2, 3, 4, 5). Its RY-sequence contains about 81940 purines 

and pyrimidines. Initial data on this chromosome were taken from the GenBank: 

https://www.ncbi.nlm.nih.gov/nuccore/X90568.1. RY-plets starting with “r” are in red, 

and RM-plets starting with “y” are in blue. 

 

%r %y   %rr %ry %yr %yy 

0,552526 0,447474   0,328289 0,227508 0,220967 0,223237 

 

%rrr %rry %ryr %ryy %yrr %yry %yyr %yyy 
0,227145 0,147549 0,11705 0,183539 0,052283 0,071687 0,087138 0,113609 

 

%rrrr %rrry %rryr %rryy %ryrr %ryry %ryyr %ryyy 
0,121455 0,077764 0,064974 0,065414 0,06341 0,045057 0,064926 0,054918 

%yrrr %yrry %yryr %yryy %yyrr %yyry %yyyr %yyyy 
0,072834 0,052282 0,040566 0,054088 0,06927 0,051599 0,051696 0,049744 

 

%yyyyy %yyyyr %yyyry %yyyrr %yyryy %yyryr %yyrry %yyrrr 
0,024347 0,026056 0,02093 0,031059 0,029046 0,023127 0,027581 0,038199 

%yryyy %yryyr %yryry %yryrr %yrryy %yrryr %yrrry %yrrrr 
0,02331 0,030937 0,018184 0,026361 0,023371 0,026849 0,02929 0,047474 

%ryyyy %ryyyr %ryyry %ryyrr %ryryy %ryryr %ryrry %ryrrr 
0,026239 0,027276 0,029839 0,037405 0,025506 0,019404 0,028191 0,033805 

 

n = 5 

%22223=0,039 ≈ %32222=0,038 

%22232=0,044179 ≈ %23222=0,044179 

%22233=0,024 ≈ %33222=0,025 

%22323=0,042 ≈ %32322=0,044 

%22332=0,036 ≈ %23322=0,034 

%22333=0,018 ≈ %33322=0,017 

%23333=0,014 ≈ %33332=0,011 

https://www.ncbi.nlm.nih.gov/nuccore/X90568.1


        

 

 

%rryyy %rryyr %rryry %rryrr %rrryy %rrryr %rrrry %rrrrr 
0,027337 0,033439 0,027642 0,037161 0,042409 0,035636 0,048206 0,074384 

 

Analysis of the phenomenological data in Table 11 reveals the following. The 

percentage of any RY-monoplet is practically equal to the sum of percentages of those 

RY-duplets, which are generated from this RY-monoplet by addition of the suffixes “r” 

and “y” to it, for example, %r ≈ %rr+%ry. The percentage of any RY-tetraplets is 

practically equal to the sum of those RY-pentaplets, which are generated from it with 

addition of the suffixes r and y to it, for example, %rrrr ≈ %rrrrr+%rrrry. Fig. 49 shows 

these percentage dichotomous interconnections in detail with rounded percent values. 

 

Suffix dichotomies between percentages of RY-monoplets and RY-duplets: 

 

%r=0,553 ≈ %rr+%ry=0,556;          %y=0,447 ≈ %yr+%yy=0,444 

 

Suffix dichotomies between percentages of RY-tetraplets and RY-pentaplets: 

 

%rrrr=0,121 ≈ %rrrrr+%rrrry=0,123; 

%rrry=0,078 ≈ %rrryr+%rrryy=0,078; 

%rryr=0,065 ≈ %rryrr+%rryry=0,065; 

%rryy=0,065 ≈ %rryyr+%rryyy=0,061; 

%ryrr=0,063≈ %ryrrr+%ryrry=0,062;  

%ryry=0,045 ≈ %ryryr+%ryryy=0,045; 

%ryyr=0,065 ≈ %ryyrr+%ryyry=0,067; 

%ryyy=0,055 ≈ %ryyyr+%ryyyy=0,054; 

%yrrr=0,073 ≈ %yrrrr+%yrrry=0,077; 

%yrry=0,052 ≈ %yrryr+%yrryy=0,050; 

%yryr=0,041 ≈ %yryrr+%yryry=0,045; 

 %yryy=0,054≈ %yryyr+%yryyy=0,054;  

%yyrr=0,069 ≈ %yyrrr+%yyrry=0,066; 

%yyry=0,052 ≈ %yyryr+%yyryy=0,052; 

%yyyr=0,052 ≈ %yyyrr+%yyyry=0,052; 

%yyyy=0,050 ≈ %yyyyr+%yyyyy=0,050 

 

Fig. 49. Dichotomous interconnections between percent values of RY-n-plets with n=1 

and n=2, and also with n=4 and n=5 for the gene of the human longest protein Titin in 

the case of the suffix dichotomies. Percentage values are taken from Table 11 and 

rounded to the third decimal place. In each of the 18 shown equations, percent values 

in the left side and in the right side of the equation are practically coincide each other. 

These values are marked by bold numbers. 

 

But for the case n=3, that is, for the shown percentage set of RY-triplets, its 

dichotomous interconnections with neighboring percentage sequences of RY-duplets 

and RY-tetraplets are significantly disturbed in the considered TTN gene. 

By analogy with the dichotomy trees of the percentages of H-n-plets in genomic 

DNAs shown in Fig. 25, it is possible to construct a tree of percentages of n-plets of 

purines “r” and pyrimidine “y” for the DNA of the analyzed gene. Fig. 50 shows that 

at n=3 there is a significant violation of its dichotomy interconnections rule with the 

percent values of n-plets of neighboring levels (n = 2 and n = 4). 



        

 

 

 

 

∑ % 

Percentage of RY-n-plets 

starting with purine “r” 

Percentage of RY-n-plets 

starting with pyrimidine “y” 

 

∑ % 

0,553 %r %y 0,447 

0,556 %ry+%rr %yy+%yr 0,444 

0,675 %ryy+%ryr+%rry+%rrr %yyy+%yyr+%yry+%yrr 0,325 

0,558 %ryyy+%ryyr+%ryry+%ryrr 

+%rryy+%rryr+%rrry+%rrrr 

%yyyy+%yyyr+%yyry+%yyrr 

+%yryy+ %yryr+%yrry+%yrrr 

0,442 

0,554 

 

%ryyyy+%ryyyr+%ryyry+ 

%ryyrr+%ryryy+%ryryr+ 

%ryrry+%ryrrr+%rryyy+ 

%ryyyr+%rryry+%rryrr+ 

%rrryy+%rrryr+%rrrry+%rrrr

r 

%yyyyy+%yyyyr+%yyyry+ 

%yyyrr+%yyryy+%yyryr+ 

%yyrry+%yyrrr+%yryyy+ 

%yryyr +%yryry+%yryrr+ 

%yrryy+%yrryr+%yrrry+%yrr

rr 

0,446 

 

 
 

Fig. 50. At the top: : numeric demonstration of the partial preservation of the 

dichotomy rule in the interconnections of the percentage sets of RY-n-plets in the DNA 

of the gene TTN at n = 1, 2, 4, 5 (the left and the right columns present a practical 

invariance of sums of percentages of red and blue RY-n-plets at these levels). In the 

case n=3, the sequence of RY-triplets gives a violation of this rule (marked in yellow). 

Rounded numeric data of percentages are taken from Table 11. At the bottom: the 

diagram of comparative percent values of RY-n-plets at different values of n. At each 

“n”, lengths of intervals are proportional to percent values of corresponding RY-n-plets 

from Table 11. 

 

     In the set of RY-n-plets in the considered gene TTN, the rule of percentage 

equalities holds for the following pairs: those two RY-n-plets, which are read as mirror 

(or reversed) copies of each another (such as rrry and yrrr), always have almost the 

same percent values for cases n = 2, 4, 5.  Fig. 51 shows corresponding numerical data. 

 

 

 

 

 

 

 

 

 

 

 

 

n = 2 %ry=0,228 ≈ %yr=0,221 

 

n = 4 

%rrry=0,078 ≈ %yrrr=0,073 

%rryr=0,065 ≈ %ryrr=0,063 

%ryyy=0,055 ≈  %yyyr=0,055 

 

n = 5 

%rrrry=0,048 ≈ %yrrrr=0,047 

%rrryr=0,036 ≈ %ryrrr=0,034 

%rrryy=0,042 ≈ %yyrrr=0,038 

%rryry=0,028≈ %yryrr=0,026 

%rryyr=0,033 ≈ %ryyrr=0,037 

%rryyy=0,027 ≈ %yyyrr=0,031 

%ryyyy=0,026 ≈ %yyyyr=0,026 



        

 

 

Fig. 51. The numeric confirmation of the rule of percentage equalities for pairs 

of reversed RY-n-plets in the gene TTN for cases of n = 2, 4, 5. Rounded numeric data 

of percentages are taken from Table 11. 

 

But for the case of n = 3, that is for the percentage sequence of reversed RY-

triplets in the gene, this rule of percentage equalities is disturbed since this sequence 

has expressed percentages inequalities for such pairs: %rry=0,148 ≠ %yrr=0,052, and 

%ryy=0,184 ≠ %yyr=0,087. 

 

- 11.3. The HBS-analysis of the keto-amino sequence in the gene TTN 

 

The HBS-analysis of the keto (K) and amino (M) sequence in single-stranded DNA 

of the gene TTN gives percentage data for KM-n-plets presented in Table 12. 

 

 Table 12. Phenomenological percent values of each of the KM-n-plets in the 

corresponding n-plets sequence of keto (K) and amino (M) elements of the single-

stranded DNA of the gene TTN (n = 1, 2, 3, 4, 5). Its KM-sequence contains about 

81940 keto and amino elements. Initial data on this chromosome were taken from the 

GenBank: https://www.ncbi.nlm.nih.gov/nuccore/X90568.1. KM-plets starting with 

“K” are in red, and KM-plets starting with “M” are in blue. 

 

%K %M   %KK %KM %MK %MM 

0,46949 0,53051   0,242909 0,223627 0,229534 0,30393 

 

%KKK %KKM %KMK %KMM %MKK %MKM %MMK %MMM 

0,122396 0,100978 0,124995 0,14916 0,108959 0,091641 0,130634 0,171237 

 
%KKKK %KKKM %KKMK %KKMM %KMKK %KMKM %KMMK %KMMM 

0,06063 0,062631 0,049109 0,072346 0,04579 0,040713 0,060874 0,078008 

%MKKK %MKKM %MKMK %MKMM %MMKK %MMKM %MMMK %MMMM 

0,063559 0,056285 0,044423 0,063168 0,071125 0,062241 0,077227 0,091872 

 
%KKKKK %KKKKM %KKKMK %KKKMM %KKMKK %KKMKM %KKMMK %KKMMM 

0,031547 0,028313 0,023371 0,039419 0,025201 0,020442 0,031608 0,041372 

%KMKKK %KMKKM %KMKMK %KMKMM %KMMKK %KMMKM %KMMMK %KMMMM 

0,02453 0,024896 0,017208 0,023981 0,030876 0,024835 0,034843 0,042287 

%MKKKK %MKKKM %MKKMK %MKKMM %MKMKK %MKMKM %MKMMK %MKMMM 

0,033561 0,034232 0,022028 0,033561 0,0227 0,01971 0,025751 0,034598 

%MMKKK %MMKKM %MMKMK %MMKMM %MMMKK %MMMKM %MMMMK %MMMMM 

0,036612 0,033683 0,030327 0,03826 0,040456 0,037344 0,040212 0,052233 

 

 Analysis of the phenomenological data in Table 12 reveals the following. 

The percentage of any KM-monoplet is practically equal to the sum of percentages of 

those KM-duplets, which are generated from this KM-monoplet by addition of the 

suffixes K and M to it, for example, %K ≈ %KK+%KM. The percentage of any KM-

tetraplers is practically equal to the sum of those KM-pentaplets, which are generated 

from it with addition of the suffixes K and M to it, for example, %KKKK ≈ %KKKKK 

+ %KKKKM. Fig. 52 shows these percentage dichotomous interconnections in detail 

with rounded percent values. 

 

https://www.ncbi.nlm.nih.gov/nuccore/X90568.1


        

 

 

Suffix dichotomies between percentages of KM-monoplets and KM-duplets: 

 

%K=0,469 ≈ %KK+%KM=0,467;          %M=0,531 ≈ %MK+%MM=0,533 

 

Suffix dichotomies between percentages of KM-tetraplets and KM-pentaplets: 

 

%KKKK=0,061 ≈ %KKKKK+%KKKKM=0,060; 

%KKKM=0,063 ≈ %KKKMK+%KKKMM=0,063; 

%KKMK=0,049 ≈ %KKMKK+%KKMKM=0,046; 

%KKMM=0,072 ≈ %KKMMK+%KKMMM=0,073; 

%KMKK=0,046 ≈ %KMKKK+%KMKKM=0,049;  

%KMKM=0,041 ≈ %KMKMK+%KMKMM=0,041; 

%KMMK=0,061 ≈ %KMMKK+%KMMKM=0,056; 

%KMMM=0,078 ≈ %KMMMK+%KMMMM=0,077; 

%MKKK=0,064 ≈ %MKKKK+%MKKKM=0,068; 

%MKKM=0,056 ≈ %MKKMK+%MKKMM=0,056; 

%MKMK=0,044 ≈ %MKMKK+%MKMKM=0,042; 

 %MKMM=0,063 ≈ %MKMMK+%MKMMM=0,060;  

%MMKK=0,071 ≈ %MMKKK+%MMKKM=0,070; 

%MMKM=0,062 ≈ %MMKMK+%MMKMM=0,069; 

%MMMK=0,077 ≈ %MMMKK+%MMMKM=0,078; 

%MMMM=0,092 ≈ %MMMMK+%MMMMM=0,092 

 

Fig. 52. Dichotomous interconnections between percent values of KM-n-plets with n=1 

and n=2, and also with n=4 and n=5 for the gene of the human longest protein Titin in 

the case of the suffix dichotomies. Percentage values are taken from Table 12 and 

rounded to the third decimal place. In each of the 18 shown equations, percent values 

in the left side and in the right side of the equation are practically coincide each other. 

These values are marked by bold numbers. 

 

     But fot the case n=3, that is, for the shown percentage set of KM-triplets, its 

dichotomous interconnections with neighboring percentage sequences of KM-duplets 

and KM-tetraplets are significantly disturbed in the considered TTN gene. 

     By analogy with the dichotomy trees of the percentages of H-n-plets in genomic 

DNAs shown in Fig. 25, it is possible to construct a tree of percentages of n-plets of 

keto (K) and amino (M) elements for the DNA of the analyzed gene. Fig. 53 shows that 

at n=3 there is a significant violation of the dichotomy interconnections with the percent 

values of n-plets of neighboring levels (n = 2 and n = 4) in the gene. 

 

 

∑ % 

Percentage of KM-n-plets 

starting with K 

Percentage of KM-n-plets 

starting with M 

 

∑ % 

0,469 %K %M 0,531 

0,467 %KM+%KK %MM+%MK 0,533 

 

0,498 

%KMM+%KMK+ 

%KKM+%KKK 

%MMM+%MMK+ 

%MKM+%MKK 0,502 

0,470 %KMMM+%KMMK+ 

%KMKM+%KMKK+ 

%KKMM+%KKMK+ 

      %KKKM+%KKKK 

%MMMM+%MMMK+ 

%MMKM+%MMKK+ 

%MKMM+ %MKMK+ 

      %MKKM+%MKKK 

0,530 



        

 

 

0,465 %KMMMM+%KMMMK+ 

%KMMKM+%KMMKK+ 

%KMKMM+%KMKMK+ 

%KMKKM+%KMKKK+ 

 %KKMMM+%KMMMK+ 

%KKMKM+%KKMKK+ 

%KKKMM+%KKKMK+ 

          %KKKKM+%KKKKK 

%MMMMM+%MMMMK+ 

%MMMKM+%MMMKK+ 

%MMKMM+%MMKMK+ 

%MMKKM+%MMKKK+ 

 %MKMMM+%MKMMK+ 

%MKMKM+%MKMKK+ 

%MKKMM+%MKKMK+ 

    %MKKKM+%MKKKK 

0,535 

 

 
 

Fig. 53. At the top: : numeric demonstration of the partial preservation of the 

dichotomy rule in the interconnections of the percentage sets of KM-n-plets in the DNA 

of the gene TTN at n = 1, 2, 4, 5 (the left and the right columns present a practical 

invariance of sums of percentages of red and blue KM-n-plets at these levels). In the 

case n=3, the sequence of KM-triplets gives a violation of this rule (marked in yellow). 

At the bottom: the diagram of comparative percent values of KM-n-plets at different 

values of n. At each “n”, lengths of intervals are proportional to percent values of 

corresponding KM-n-plets from Table 12. 

 

In the set of KM-n-plets in the considered gene TTN, the rule of percentage 

equalities holds for the following pairs: those two KM-n-plets, which are read as mirror 

(or reversed) copies of each another (such as KKKM and MKKK), always have almost 

the same percent values for cases n = 2, 4, 5.  Fig. 54 shows numerical data confirming 

this. 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 54. The numeric confirmation of the rule of percentage equalities for pairs of 

reversed KM-n-plets in the gene TTN for cases of n = 2, 4, 5. Rounded numeric data 

of percentages are taken from Table 12. 

 

 But for the case of n = 3, that is for the percentage sequence of reversed KM-

triplets in the gene, this rule of percentage equalities is disturbed since this sequence 

n = 2 %KM=0,224 ≈ %MK=0,230 

 

n = 4 

%KKKM=0,063 ≈ %MKKK=0,064 

%KKMK=0,049 ≈ %KMKK=0,046 

%KMMM=0,078 ≈  %MMMK=0,077 

 

n = 5 

%KKKKM=0,028 ≈ %MKKKK=0,034 

%KKKMK=0,023 ≈ %KMKKK=0,025 

%KKKMM=0,039 ≈ %MMKKK=0,037 

%KKMKM=0,020 ≈ %MKMKK=0,021 

%KKMMK=0,032 ≈ %KMMKK=0,031 

%KKMMM=0,041 ≈ %MMMKK=0,040 

%KMMMM=0,042 ≈ %MMMMK=0,040 



        

 

 

has expressed percentages inequalities for such pairs: %KKM=0,101 ≠%MKK=0,109 

and %KMM=0,149 ≠ %MMK=0,131. 

       The application of the HBS-method to the analysis of genes and different fragments 

of genomic DNAs should be continued and put on a systematic basis. It is desirable to 

create an international program of such research in the interests of evolutionary biology, 

biotechnology, personal genetics and pharmacology. 

 

12. Algebra-matrix representations of alphabetic families of probabilities 

of n-plets in binary DNAs sequences 

 

Let us continue HBS-analysis of long and relatively short DNA sequences containing 

the noted binary subsequences of different modalities: weak and strong hydrogen bonds 

(that is, 2 and 3 bonds); purines and pyrimidines; keto and amino elements.  

It is obvious that, firstly, the shorter DNA sequence the less quantity of its 

possible representations in a form of n-plets exists. For example, the binary sequence 

233232 has only three such representations based on three values n = 1, 2, 3 (that is, 

the monoplet sequence 2-3-3-2-3-2; the duplet sequence 23-32-32; and triplet sequence 

233-232). Accordingly, short and long DNA sequences are always distinguishable by 

the number of those  of n-plets alphabets, on whose basis they can be represented as 

sets of n-plet sequences (even if these two DNAs have the same probabilities in their 

monoplet representations). It is important to take this into account in the topic of 

polyplet-stochastic certification of genetic sequences for their comparative analysis. 

Secondly, in a general case, the noted rules of percentage dichotomies, which 

hold in the binary sequences of long DNAs, don't hold in very short binary sequences. 

For example, the short binary sequence 233323 does not obey such rules.  

       The discovery of universal rules in the families of probabilities of n-plets in long 

genomic DNAs of higher and lower organisms draws increased attention to the 

algebraic features of the stochastic organization of both long and short DNAs studied 

by the HBS-method. 

 Let us return to Fig. 1 presented the beginning of the family of genetic matrices 

with strong ordered arrangements of the DNA nucleotide alphabets (4 monoplets, 16 

duplets, 64 triplets, etc.) on the basis of the noted molecular features of nucleotides. 

Each of the 4 nucleotides A, T, C, and G is characterized by its number of hydrogen 

bonds 2 or 3 in its complementary pairs A-T and C-G in double-stranded DNAs: A=T=2 

and C=G=3. Correspondingly, each nucleotide in the genetic matrices in Fig 1 can be 

represented by its number of these hydrogen bonds. For example, in this case, the 

symbolic triplet CAG is represented by the digital sequence 323. In the result of such 

representation of all n-plets of nucleotide, the matrices of nucleotide n-plets in Fig. 1 

are represented by corresponding matrices of digital n-plets of hydrogen bonds (that is, 

of H-n-plets) in Fig. 55. 
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Fig. 55. The beginning of the family of dyadic-shift matrices of n-plets of hydrogen 

bonds 2 and 3 with strict arrangements of all shown H-n-plets in the result of the binary 

representation of nucleotide n-plets in genetic matrices in Fig. 1 as described in the text. 

 

- 12.1. Alphabetic matrices of H-n-plets percentages and 2n-dimensional  

          hyperbolic numbers 

 

In any DNA sequence of hydrogen bonds 2 and 3, analyzed by the HBS-method, 

each H-n-plet has its individual percent value. Representing each of H-n-plets in 

matrices in Fig. 55 by its percent value in the analyzed DNA, you get dyadic-shift 

matrices of percent values of H-n-plets in Fig. 56.  
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Fig. 56. The beginning of the family of dyadic-shift matrices of percent values of H-n-

plets for a voluntary DNA, which is studied as a binary sequence of its hydrogen bonds 

2 and 3 by the HBS-method. 

 

Correspondingly, emergent properties of stochastic organization of DNA 

sequences of hydrogen bonds - as a complex system of H-n-plets - are related with 

(2n*2n)-matrices, which can serve as matrix operators. One can show that the matrices 

of (2*2)-, (4*4)-, (8*8)-orders in Fig. 56 are the matrix representations of 2n-

dimensional hyperbolic numbers (hyperbolic numbers are also known as split-complex 

numbers, double numbers, perplex number, or hyperbolic matrions) 

 000 001 010 011 100 101 110 111 

000 333 332 323 322 233 232 223 222 
001 332 333 322 323 232 233 222 223 

010 323 322 333 332 223 222 233 232 

011 322 323 332 333 222 223 232 233 

100 233 232 223 222 333 332 323 322 

101 232 233 222 223 332 333 322 323 

110 223 222 233 232 323 322 333 332 

111 222 223 232 233 322 323 332 333 

 000 001 010 011 100 101 110 111 

000 %333 %332 %323 %322 %233 %232 %223 %222 

001 %332 %333 %322 %323 %232 %233 %222 %223 

010 %323 %322 %333 %332 %223 %222 %233 %232 

011 %322 %323 %332 %333 %222 %223 %232 %233 

100 %233 %232 %223 %222 %333 %332 %323 %322 

101 %232 %233 %222 %223 %332 %333 %322 %323 

110 %223 %222 %233 %232 %323 %322 %333 %332 

111 %222 %223 %232 %233 %322 %323 %332 %333 



        

 

 

[https://en.wikipedia.org/wiki/Split-complex_number, Kantor, Solodovnikov, 1989; 

Petoukhov, 2008; Petoukhov, He, 2010]). Let us explain this with using so-called 

dyadic-shift decompositions of (2n*2n)-matrices, which are well-known in the theory 

of digital signals processing [Ahmed, Rao, 1975, table 6.6.1]. 

      The (2*2)-matrix in Fig. 56 is decomposed into the sum of two sparse matrices e0 

and e1 with appropriate coefficients as Fig. 57 shows. The set of these two matrices e0 

and e1 is closed relative to multiplication and define the multiplication table of the 

known algebra of 2-dimensional hyperbolic numbers also showing in Fig. 57. These 2-

dimensional hyperbolic numbers are usually written with the linear expression: h = a + 

bj, where a and b are real numbers, and j is the imaginary unit of hyperbolic numbers 

satisfying the condition j2 = +1 (don’t confuse with the imaginary unit i of complex 

numbers satisfying the condition i2 = -1). In Fig. 57, the sparse matrix e0 represents the 

real unit since e0
2 = e0, and the sparse matrix e1 represents the imaginary unit j since 

e1
2 = e0. Each of these matrices is orthogonal, that is, the real specialization of a unitary 

matrix. 

 

%3, %2 

%2, %3 

 

= %3* 

1, 0 

0, 1 

 

+ %2* 

0, 1 

1, 1 

 

= %3*e0 + %2*e1 

    

 

  

* e0 e1 

e0 e0 e1 

e1 e1 e0 
 

 

Fig. 57. The decomposition of the (2*2)-matrix of percent values of H-monoplets from 

Fig. 56 revealing that this matrix is the matrix representation of 2-dimensional 

hyperbolic number %3 + j*%2. The table of multiplication of basis elements of the 

algebra of 2-dimensional hyperbolic numbers is shown. 

 

     Fig. 58 shows the similar decomposition of the (4*4)-matrix from Fig. 56 into the 

sum of 4 sparse matrices s0, s1, s2, and s3 with appropriate coefficients. The set of these 

4 matrices is also closed relative to multiplication and define the multiplication table of 

the known algebra of 4-dimensional hyperbolic numbers given in Fig. 58. The sparse 

matrix s0 represents the real unit, and the matrices s1, s2, s3 represent imaginary unites 

of these 4-dimensional hyperbolic numbers, whose linear form is as0+bs1+cs2+ds3 

where a, b, c, d are real numbers. Each of these sparse matrices is orthogonal. 

 

%33, %32, %23, %22 

%32, %33, %22, %23 

%23, %22, %33, %32 

%22, %23, %32, %33 

 

 

= %33 

1, 0, 0, 0 

0, 1, 0, 0 

0, 0, 1, 0 

0, 0, 0 ,1  

 

 

+%32 

0, 1, 0, 0 

1, 0, 0, 0 

0, 0, 0, 1 

0, 0, 1, 1 

 

 

+%23 

0, 0, 1, 0 

0, 0, 0, 1 

1, 0, 0 0 

0, 1, 0, 0 

 

 

+ 

 

 

 

+ %22 

 

0, 0, 0, 1 

0, 0, 1, 0 

0, 1, 0, 0 

1, 0, 0, 0 

 

 

= %33*s0 + %32*s1+%23*s2 + %22*s3 

 

 

 

* s0 s1 s2 s3 

s0 s0 s1 s2 s3 

s1 s1 s0 s3 s2 

s2 s2 s3 s0 s1 

s3 s3 s2 s1 s0 
 

 

 Fig. 58. The dyadic-shift decomposition of the (4*4)-matrix of percent values 

of H-duplets from Fig. 56 revealing that this matrix is the matrix representation of 4-



        

 

 

dimensioanl hyperbolic number %33*s0 + %32*s1+%23*s2 + %22*s3 where s0 

represents the real unit, and s1, s2, and s3 represent imaginary units of the algebra of 4-

dimensional hyperbolic numbers. The table of multiplication of basis elements of this 

algebra is shown where the bold frame marks the subalgebra of 2-dimensional 

hyperbolic numbers. 

 

 Fig. 59 shows the similar decomposition of the (8*8)-matrix from Fig. 56 into 

the sum of 8 sparse matrices g0, g1, g2, g3, g4, g5, g6, g7 with appropriate coefficients: 

%333*g0 + %332*g1 + %323*g2 + %322*g3 + %233*g4 + %232*g5 + %223*g6 + 

%222*g7. The set of these 8 matrices is also closed relative to multiplication and define 

the shown multiplication table of the algebra of 8-dimensional hyperbolic numbers. The 

sparse matrix g0 represents the real unit, and the matrices g1, g2, g3, g4, g5, g6, g7 

represent imaginary unites of these 4-dimensional hyperbolic numbers, whose linear 

form is ag0+bg1+cg2+dg3+eg4+fg5+kg6+rg7 where a, b, c, d, e, f, k, r are real numbers. 

Each of these sparse matrices is orthogonal.  

 

 

 

 

%333 

1,0,0,0,0,0,0,0 

0,1,0,0,0,0,0,0 

0,0,1,0,0,0,0,0 

0,0,0,1,0,0,0,0 

0,0,0,0,1,0,0,0 

0,0,0,0,0,1,0,0 

0,0,0,0,0,0,1,0 

0,0,0,0,0,0,0,1 

 

 

 

+ %332 

0,1,0,0,0,0,0,0 

1,0,0,0,0,0,0,0 

0,0,0,10,0,0,0 

0,0,1,0,0,0,0,0 

0,0,0,0,0,1,0,0 

0,0,0,0,1,0,0,0 

0,0,0,0,0,0,0,1 

0,0,0,0,0,0,1,0 

 

 

 

+ %323 

0,0,1,0,0,0,0,0 

0,0,0,1,0,0,0,0 

1,0,0,0,0,0,0,0 

0,1,0,0,0,0,0,0 

0,0,0,0,0,0,1,0 

0,0,0,0,0,0,0,1 

0,0,0,0,1,0,0,0 

0,0,0,0,0,1,0,0 

 

 

 

+ 

 

 

 

 

+ %322 

0,0,0,1,0,0,0,0 

0,0,1,0,0,0,0,0 

0,1,0,0,0,0,0,0 

1,0,0,0,0,0,0,0 

0,0,0,0,0,0,0,1 

0,0,0,0,0,0,1,0 

0,0,0,0,0,1,0,0 

0,0,0,0,1,0,0,0 

 

 

 

+ %233 

0,0,0,0,1,0,0,0 

0,0,0,0,0,1,0,0 

0,0,0,0,0,0,1,0 

0,0,0,0,0,0,0,1 

1,0,0,0,0,0,0,0 

0,1,0,0,0,0,0,0 

0,0,1,0,0,0,0,0 

0,0,0,1,0,0,0,0 

 

 

 

+ %232 

0,0,0,0,0,1,0,0 

0,0,0,0,1,0,0,0 

0,0,0,0,0,0,0,10 

0,0,0,0,0,0,1,0 

0,1,0,0,0,0,0,0 

1,0,0,0,0,0,0,0 

0,0,0,1,0,0,0,0 

0,0,1,0,0,0,0,0 

 

 

 

+ 

 

 

 

 

+ %223 

 

 

 

0,0,0,0,0,0,1,0 

0,0,0,0,0,0,0,1 

0,0,0,0,1,0,0,0 

0,0,0,0,0,1,0,0 

0,0,1,0,0,0,0,0 

0,0,0,1,0,0,0,0 

1,0,0,0,0,0,0,0 

0,1,0,0,0,0,0,0 

 

 

 

+%222 

0,0,0,0,0,0,0,1 

0,0,0,0,0,0,1,0 

0,0,0,0,0,1,0,0 

0,0,0,0,1,0,0,0 

0,0,0,1,0,0,0,0 

0,0,1,0,0,0,0,0 

0,1,0,0,0,0,0,0 

1,0,0,0,0,0,0,0 

 

 

 

= %333*g0 + %332*g1 +      

   %323*g2 + %322*g3 +  

   %233*g4 + %232*g5 +   

   %223*g6 + %222*g7. 

 

* g0 g1 g2 g3 g4 g5 g6 g7 

g0 g0 g1 g2 g3 g4 g5 g6 g7 

g1 g1 g0 g3 g2 g5 g4 g7 g6 

g2 g2 g3 g0 g1 g6 g7 g4 g5 

g3 g3 g2 g1 g0 g7 g6 g5 g4 

g4 g4 g5 g6 g7 g0 g1 g2 g3 



        

 

 

g5 g5 g4 g7 g6 g1 g0 g3 g2 

g6 g6 g7 g4 g5 g2 g3 g0 g1 

g7 g7 g6 g5 g4 g3 g2 g1 g0 

 

Fig. 59. The dyadic-shift decomposition of the (8*8)-matrix of percent values of H-

triplets from Fig. 56 revealing that this matrix is the matrix representation of 8-

dimensioanl hyperbolic number %333*g0+%332*g1+%323*g2+%322*g3+%233*g4 

+%232*g5+ %223*g6+%222*g7 where g0 represents the real unit, and g1, g2, g3, g4, g5, 

g6, g7 represent imaginary units of the algebra of 8-dimensional hyperbolic numbers. 

The table of multiplication of basis elements of this algebra is shown where the bold 

frames mark the subalgebras of 2-dimensional and 4-dimensional hyperbolic numbers. 

 

 It should be noted the typical hierarchical structure of the multiplication tables 

of algebras of 2n-dimensional hyperbolic numbers (Figs. 58, 59): a multiplication table 

of a 2n+1-dimensional algebra of hyperbolic numbers contains a subalgebra of 2n-

dimensional algebra of hyperbolic numbers. These multiplication tables have a fractal-

like character since their sub-quadrants resemble those dyadic-shift matrices, which 

represent hyperbolic numbers of appropriate dimensionality and which can be 

considered as representations of additional alphabets. 

      Each set of percent values of H-n-plets (under fixed n) can be represented in a form 

of corresponding 2n-dimensional hyperbolic number. For example, the set of percent 

values of H-duplets of DNA of human chromosome № 1 (Table 1) is represented in 

accordance with Fig. 58 by the following 4-dimensional hyperbolic number (percent 

values from Table 1 are rounded): 0,163*s0 + 0,255*s1+0,255*s2 + 0,328*s3. 

Representing a family of percent values of H-n-plets of any DNA H-sequence in a form 

of the family of corresponding 2n-dimensional hyperbolic numbers allows comparing 

of different DNA sequences each other with using all formalisms of named algebras, 

including multiplication and addition, definition of modulus, etc. It leads to reveal 

possible hidden interrelations inside sets of sequences of hydrogen bonds from different 

DNAs. Addition and multiplication of 2n-dimensional hyperbolic numbers are given by 

addition and multiplication of their matrices. 

      In genomic informatics, we deal with stochastic ensembles associated with 

“multilayer” algebras and geometries of 2n-dimensional spaces: as the examples in Figs. 

57-59 show, for each value of n in n-plet representations of genomic DNAs, sets of 

probabilities of their n-plets are represented by one or another 2n-dimensional 

hyperbolic number, which can be presented as a vector in the 2n-dimensional space. 

The corresponding coordinates of these probability vectors from 2n- and 2n+1-

dimensional spaces are related by the described dichotomy relations. If we additionally 

take into account the binary opposition of strong and weak roots of triplets [Rumer, 

1968], then these sets of probabilities in 2n-dimensional spaces turn out to be related to 

split-quaternions by Cockle and their algebraic extensions [Petoukhov, 2022a]. 

 

- 12.2. Alphabetic matrices of H-n-plets percentages, characteristic   

          polynomials, and algebraic geometry 

 

 One should additionally emphasize the following usefulness of representing of 

ensembles of percent values of H-n-plets of different DNA H-sequences in such form 

of families of genetic (2n*2n)-matrices, which are algorithmically constructed on 

binary-oppositional features of 4 nucleobases A, T, C, G (see Fig. 1). Each such 



        

 

 

numeric square matrix has its eigenvalues, eigenvectors, and characteristic polynomial, 

which can be used to study hidden emergent properties of the considered DNA 

sequence as a complex system. Such discovered connections of DNA H-sequences with 

characteristic polynomials bring the algebraic genetics closer to algebraic geometry, 

which is a branch of mathematics studies zeros of multivariate polynomials 

[https://en.wikipedia.org/wiki/Algebraic_geometry#:~:text=Algebraic%20geometry%

20is%20a%20branch,about%20these%20sets%20of%20zeros]. Modern algebraic 

geometry is based on the use of abstract algebraic techniques, mainly from 

commutative algebra, for solving geometrical problems about these sets of zeros. 

Algebraic geometry occupies a central place in modern mathematics and has multiple 

conceptual connections with such diverse fields as complex analysis, topology, and 

number theory. Now formalisms and achievements of algebraic geometry can be used 

in matrix genetics and algebraic biology to provide a progress of knowledge on secrets 

of inherited organization of living bodies. In turn, the structural features of the genetic 

informatics system can be useful for the further development of algebraic geometry and 

the expansion of its applications. 

      Fig. 60 shows an example of the characteristic polynomial for the (4*4)-matrix of 

percent values of 4 duplets of hydrogen bonds (from Fig. 58) процентов 4 дуплетов 

водородных связей (Fig. 58), based on these percentages for human chromosome № 

1 DNA from Table 1 (this polynomial is calculated using the online calculator 

https://mathforyou.net/online/matrices/charpoly/). 4 eigenvalues of the matrix in Fig. 

60 are the following: -0.1650, -0.1650, -0.0190, 1.0010.                

 

 

 

P(W, λ) = λ4 - 0.652λ3 - 0.315854λ2 - 0.03301122λ - 0.000517792275 

 

    Fig. 60.  At the top: the matrix W of percent values of duplets of hydrogen bonds 

from Figs. 56 and 58 in case of human chromosome № 1 DNA (Table 1). Percentages 

are rounded. At the bottom: the characteristic polynomial P(W, λ) of this matrix. 

 

 From the described point of view, stochastic organization of any DNA sequence 

of hydrogen bonds can be characterized by a corresponding set of characteristic 

polynomials of (2n*2n)-matrices of percent values of its H-n-plets. Such sets of 

characteristic polynomials for probabilistic (2n*2n)-matrices of H-n-plets, presenting 

DNAs of different genomes and genes, should be analyzed in the future. 

 

- 12.3. Alphabetic matrices of H-n-plets percentages and metric tensors 

 

Morphogenetic processes on different lines and branches of biological evolution 

sometimes demonstrate an amazing structural commonality. Examples of this 

generality are the law of homological series of N.I. Vavilov and the phenomena of 

phyllotaxis. Many researchers devoted their works to the problems of morphogenetic 

parallelisms (or independent similarities not related to the dictates of environmental 

conditions or functions) and non-Euclidean bio-symmetries. A characteristic feature of 

inherited biological surfaces is their curvilinear character. The life of organisms is in 

 %33 %32 %23 %22  0,163 0,255 0,255 0,328 

 %32 %33 %22 %23  0,255 0,163 0,328 0,255 

W = %23 %22 %33 %32 = 0,255 0,328 0,163 0,255 

 %22 %23 %32 %33  0,328 0,255 0,255 0,163 

https://en.wikipedia.org/wiki/Algebraic_geometry#:~:text=Algebraic%20geometry%20is%20a%20branch,about%20these%20sets%20of%20zeros
https://en.wikipedia.org/wiki/Algebraic_geometry#:~:text=Algebraic%20geometry%20is%20a%20branch,about%20these%20sets%20of%20zeros
https://mathforyou.net/online/matrices/charpoly/


        

 

 

many ways connected precisely with surfaces, an example of which are the germ layers 

that give rise to various organs and tissues (https://ru.wikipedia.org/wiki/Gem_sheets).  

In mathematics, curvilinear surfaces are studied by means of differential 

Riemannian geometry and tensor analysis with using the key concept of the metric 

tensor. The mentioned metric tensor defines the metric in an infinitely small part of the 

surface by specifying the distance between its two infinitely close elements. Specifying 

a system (or a field) of metric tensors on a surface determines its "internal" geometry, 

allowing one to calculate arc lengths, angles between curves, areas of regions on the 

surface, regardless of its location in space. Therefore, it is natural to try to build a 

general theory of biological morphogenesis with the involvement of metric tensors.  

By definition, the metric tensor in an n-dimensional affine space with the 

introduced scalar multiplication operation is given by a nondegenerate symmetric 

matrix ||gij||, gij = gji [Rashevsky, 1964]. The coordinates gij of the metric tensor are 

pairwise scalar products of the vectors of the frame on which it is built. If a square root 

is extracted from a bibisymmetric matrix that is a metric tensor, then a new bisymmetric 

matrix is obtained, the columns of which are the vectors of this frame and which, in 

turn, can be treated as a new metric tensor. In other words, metric tensors can form 

hierarchical families (see more detail in [Petoukhov, 2008]). 
       One should note that the considered (2n*2n)-matrices of percent values of H-n-plets in 

DNA sequences of hydrogen bonds are bisymmetrical (Fig. 56) and interrelated with the 

notion of metric tensors. In corresponding model approach, each DNA nucleotide 

sequence, which contains different H-n-plets sub-sequences and analyzed by the HBS-

method, can be characterized by a family of appropriate metric tensors. It gives additional 

opportunities for comparison analysis of different DNA sequences. 

 

13. Alphabetic matrices of percentages of n-plets in cases of binary 

sequences of purines-pyrimidines and keto-amino elements in DNAs 

 

 The alphabetic (2n*2n)-matrices in Fig. 1 were algorithmically constructed on 

the basis of binary numberings of their columns and rows using two types of binary-

oppositional indicators in nucleobases A, T, C, and G. More precisely, numberings of 

all columns are based on the oppositional indicators “pyrimidine or purine" (C = T = 0, 

A = G = 1), and numberings of all rows are based on the oppositional indicators "amino 

or keto" (C = A = 0, T = G = 1). Let us now use - for binary numbering of matrix 

columns - the binary-oppositional indicators “weak or strong hydrogen bonds” (that is, 

2 or 3 hydrogen bond), which separate these 4 nucleobases into two pairs. The 

complementary nucleobases A and T with 2 hydrogen bonds we denote by binary digit 

1, that is, A = T =1, and the complementary nucleobases C and G we denote by binary 

digit 1, that is, C = G = 0 (as it was marked above in section 2). Binary numberings of 

matrix rows are based on the binary-oppositional indicators “amino or keto”: A = C = 

0, G = T = 1. In matrices with such numberings of columns and rows (Fig. 61), each of 

4 letters, 16 doublets, 64 triplets, … takes automatically its own individual place and 

all components of the alphabets are arranged in a strict order since each of the 

nucleobases is uniquely determined by a pair of indicators: C is determined by the pair 

“amino and strong hydrogen bond” and correspondingly designated by binary number 

00; A is determined by the pair “amino and weak hydrogen bond” and designated by 

01;  G is determined by the pair “keto and strong hydrogen bond” and designated by 

10; T is determined by the pair “keto and weak hydrogen bond” and designated by 11. 

 

 



        

 

 

 0 1    00 01 10 11 

0 

 

 

 

 

 

 

 

C 

 

A   00 CC CA AC AA 

1 G T   01 CG CT AG AT 

     10 GC GA TC TA 

     11 GG GT TG TT 

 

 

 

 

 

 

 

 

 

 

 

Fig. 61. The square tables of DNA-alphabets of 4 nucleotides, 16 doublets and 64 

triplets with a strict arrangement of all components. Each of the tables is automatically 

constructed in line with the principle of special binary numberings of its columns and 

rows based on molecular binary oppositions of the nucleobases (see explanations in the 

text). 

 

 Each of the 4 nucleotides A, T, C, and G is also characterized by its belonging 

to one of the types: “pyrimidine (C and T) or purine (A and G)". As it was mentioned 

in section 8, purines (A and G) are traditionally denoted by the symbol “r”, and 

pyrimidines (C and T) by the symbol “y”, that is, A = G = r, C = T = y. Under using 

these designations for purines and pyrimidines, the matrices in Fig. 61 are represented 

as the dyadic-shift matrices for purines and pyrimidines in Fig. 62. 

 

 0 1    00 01 10 11 

0 

 

 

 

 

 

 

 

y 

 

r   00 yy yr ry rr 

1 r y   01 yr yy rr ry 

     10 ry rr yy yr 

     11 rr ry yr yy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 000 001 010 011 100 101 110 111 

000 CCC CCA CAC CAA ACC ACA AAC AAA 
001 CCG CCT CAG CAT ACG ACT AAG AAT 

010 CGC CGA CTC CTA AGC AGA ATC ATA 

011 CGG CGT CTG CTT AGT AGG ATG ATT 

100 GCC GCA GAC GAA TCC TCA TAC TAA 
101 GCG GCT GAG GAT TCG TCT TAG TAT 

110 GGC GGA GTC GTA TGC TGA TTC TTA 

111 GGG GGT GTG GTT TGG TGT TTG TTT 

 000 001 010 011 100 101 110 111 

000 yyy yyr yry yrr ryy ryr rry rrr 

001 yyr yyy yrr yry ryr ryy rrr rry 

010 yry yrr yyy yyr rry rrr ryy ryr 

011 yrr yry yyr yyy rry rrr ryr ryy 

100 ryy ryr rry rrr yyy yyr yry yrr 

101 ryr ryy rrr rry yyr yyy yrr yry 

110 rry rrr ryy ryr yry yrr yyy yyr 

111 rrr rry ryr ryy yrr yry yyr yyy 



        

 

 

Fig. 62. The beginning of the family of dyadic-shift matrices of n-plets of pyrimidines 

(y) and purines (r) with strict arrangements of all shown H-n-plets in the result of the 

binary representation of nucleotide n-plets in genetic matrices in Fig. 61 as described 

in the text. 

 

 In any DNA sequence of purines and pyrimidines, analyzed by the HBS-

method, each n-plet of purines and pyrimidines (that is, ry-n-plet) has its individual 

percent value. Representing each ry-n-plet in Fig. 62 by its percent value in the analyzed 

DNA, you get dyadic-shift matrices of percent values of ry-n-plets in Fig. 63. 

 

 0 1    00 01 10 11 

0 

 

 

 

 

 

 

 

%y 

 

%r   00 %yy %yr %ry %rr 

1 %r %y   01 %yr %yy %rr %ry 

     10 %ry %rr %yy %yr 

     11 %rr %ry %yr %yy 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 63. The beginning of the family of dyadic-shift matrices of percent values of ry-n-

plets for a voluntary DNA, which is studied as a binary sequence of its purines and 

pyrimidines by the HBS-method. 

 

 These dyadic-shift matrices of percent values of ry-n-plets are structurally 

analogic to the dyadic-shift matrices of percent values of H-n-plets in Fig. 56. 

Correspondingly, they also connect with algebras of 2n-dimensional hyperbolic 

numbers,  characteristical polynomials of the square matrices, orthogonal matrices, 

metric tensors, etc. In other words, n-plets sequences of purines and pyrimidines in 

DNAs can be analyzed by the same algebraic tools as n-plets sequences of weak and 

strong hydrogen bonds are analyzed. 

 Now let us turn to DNA sequences of amino and keto elements. Using 

mentioned binary-oppositional indicators of nucleobases A, T, C, and G, one can 

algorithmically construct a new family of alphabetic matrices, where rows have binary 

numberings based on the oppositional indicators “weak or strong hydrogen bonds” with 

the mentioned designation C = G = 0 and A = T =1, and columns have binary 

numberings based on the oppositional indicators “pyrimidines ot purines” with the 

designation C = T = 0 and G = A = 1. In such alphabetic tables (Fig. 64), each of 4 

letters, 16 doublets, 64 triplets, … takes automatically its own individual place and all 

components of these alphabets are arranged in a strict order since each of the 

 000 001 010 011 100 101 110 111 

000 %yyy %yyr %yry %yrr %ryy %ryr %rry %rrr 

001 %yyr %yyy %yrr %yry %ryr %ryy %rrr %rry 

010 %yry %yrr %yyy %yyr %rry %rrr %ryy %ryr 

011 %yrr %yry %yyr %yyy %rry %rrr %ryr %ryy 

100 %ryy %ryr %rry %rrr %yyy %yyr %yry %yrr 

101 %ryr %ryy %rrr %rry %yyr %yyy %yrr %yry 

110 %rry %rrr %ryy %ryr %yry %yrr %yyy %yyr 

111 %rrr %rry %ryr %ryy %yrr %yry %yyr %yyy 



        

 

 

nucleobases is uniquely determined by a pair of indicators: C is determined by the pair 

“strong bond and pyrimidine” and correspondingly designated by binary number 00; G 

is determined by the pair “strong bond and purine” and designated by 01; T is 

determined by the pair “weak bond and pyrimidine” and designated by 10; A is 

determined by the pair “weak bond and purine” and designated by 11. 

 

 

 0 1    00 01 10 11 

0 

 

 

 

 

 

 

 

C 

 

G   00 CC CG GC GG 

1 T A   01 CT CA GT GA 

     10 TC TG AC AG 

     11 TT TA AT AA 

 

 

 

 

 

 

 

 

 

 

 

Fig. 64. The square tables of DNA-alphabets of 4 nucleotides, 16 doublets and 64 

triplets with a strict arrangement of all components. Each of the tables is automatically 

constructed in line with the principle of special binary numberings of its columns and 

rows based on molecular binary oppositions of the nucleobases (see explanations in the 

text). 

 

Each of the 4 nucleotides A, T, C, and G is also characterized by its belonging 

to one of the types: “amino (C and A) or keto (G and T)”. As it was mentioned in section 

9, amino elements are traditionally denoted by the symbol “M”, and keto elements by 

the symbol K. Correspondingly, we represent C = A = M and G = T = K. Under using 

these designations for amino and keto, the matrices in Fig. 64 are represented as the 

dyadic-shift matrices for keto and amino n-plets (that is, KM-n-plets). 

 

 0 1    00 01 10 11 

0 

 

 

 

 

 

 

 

M 

 

K   00 MM MK KM KK 

1 K M   01 MK MM KK KM 

     10 KM KK MM MK 

     11 KK KM MK MM 

 

 000 001 010 011 100 101 110 111 

000 CCC CCG CGC CGG GCC GCG GGC GGG 
001 CCT CCA CGT CGA GCT GCA GGT GGA 

010 CTC CTG CAC CAG GTC GTG GAC GAG 
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Fig. 65. The beginning of the family of dyadic-shift matrices of KM-n-plets with strict 

arrangements of KM-n-plets in the result of the binary representation of nucleotide n-

plets in genetic matrices in Fig. 64 as described in the text. 

 

In any DNA sequence of keto and amino indicators, analyzed by the HBS-

method, each KM-n-plet has its individual percent value. Representing each KM-n-plet 

in Fig. 65 by its percent value in the analyzed DNA, you get dyadic-shift matrices of 

percent values of KM-n-plets in Fig. 66. 
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Fig. 66. The beginning of the family of dyadic-shift matrices of percent values of KM-

n-plets for a voluntary DNA, which is studied as a binary sequence of its amino and 

keto indicators by the HBS-method. 

 

These dyadic-shift matrices of percent values of KM-n-plets are also 

structurally analogic to the dyadic-shift matrices of percent values of H-n-plets in Fig. 

56. Correspondingly, they also connect with algebras of 2n-dimensional hyperbolic 

numbers,  characteristical polynomials of the square matrices, orthogonal matrices, 

metric tensors, etc. In other words, n-plets sequences of keto and amino elements in 

DNAs can be analyzed by the same algebraic tools as n-plets sequences of weak and 

strong hydrogen bonds are analyzed. 

 

14. Quantum-information formalisms in analysis of stochastic binary 

sequences of DNAs 

 

    The discovery of universal rules of probabilities of n-plets in stochastic organization 

of the considered binary sequences of informational genomic DNAs, which are belong 

to the microworld of quantum mechanics, attracts our attention to a possible connection 

100 KMM KMK KKM KKK MMM MMK MKM MKK 
101 KMK KMM KKK KKM MMK MMM MKK MKM 

110 KKM KKK KMM KMK MKM MKK MMM MMK 

111 KKK KKM KMK KMM MKK MKM MMK MMM 

 000 001 010 011 100 101 110 111 

000 %MMM %MMK %MKM %MKK %KMM %KMK %KKM %KKK 

001 %MMK %MMM %MKK %MKM %KMK %KMM %KKK %KKM 

010 %MKM %MKK %MMM %MMK %KKM %KKK %KMM %KMK 

011 %MKK %MKM %MMK %MMM %KKK %KKM %KMK %KMM 

100 %KMM %KMK %KKM %KKK %MMM %MMK %MKM %MKK 

101 %KMK %KMM %KKK %KKM %MMK %MMM %MKK %MKM 

110 %KKM %KKK %KMM %KMK %MKM %MKK %MMM %MMK 

111 %KKK %KKM %KMK %KMM %MKK %MKM %MMK %MMM 



        

 

 

of the phenomenological rules with quantum informatics. This section is devoted to 

opportunities for analysis of the mentioned stochastic binary sequences of DNAs by 

means of quantum-information formalisms, which are described for example, in the 

book [Nielsen, Chuang, 2010].   

As it is known, a quantum bit (or qubit) is a unit of quantum information. For 

two-level quantum systems used as qubits, the state |0> is traditionally identified with 

the vector [1, 0], and the state |1> with the orthogonal vector [0, 1]. Two possible states 

for a qubit are the states |0> and |1>, which correspond to the states of 0 and 1 for a 

classical bit. The symbol |ψ> means a state of a qubit, which can be expressed by the 

following: 

                                                |ψ> = 𝛼|0> + 𝛽|1>                                                     (8) 

 

In quantum informatics, the numbers α and β can be complex numbers but in our case, 

it is enough to think of them as real numbers. They are called as amplitudes of 

probabilities of states |0> and |1>. They satisfy the condition α2 + β2 = 1, where α2 are 

β2 are probabilities of the states |0> and |1>. One should emphasize that when a qubit is 

measured, it only ever gives probabilities of the receiving |0> or |1> as the measurement 

result. Put another way, the state of a qubit is a vector in a two-dimensional vector 

space. The special states |0> and |1> are known as computational basis states and form 

an orthonormal basis for this vector space [Nielsen, Chuang, 2010, p. 13]. 

In the more general case, a system of “n” qubits is considered in quantum 

informatics. The computational basis states of this system are written in the form 

|x1x2….xn>; a quantum state of such a system is specified by 2n amplitudes [Nielsen, 

Chuang, 2010, p. 17]. If a quantum state can be represented as a vector of a Hilbert 

space, such a state is called a pure quantum state. If a pure state |ψ> can be written in 

the form |ψ> = |ψ1> ⨂ |ψ2>, where |ψi> is a pure state of the i-th subsystem and the 

symbol ⨂ denotes the tensor product, it is said to be separable. Otherwise, it is called 

entangled or non-separable [Nielsen, Chuang, 2010, p. 96]. Below we study from the 

point of view of these quantum formalisms the following question: are probabilistic 

systems of n-plets of hydrogen bonds 2 and 3 in binary H-sequences of genomic DNAs 

correspond to entangled states or not? 

In technical devices of quantum informatics, a qubit can be represented in many 

ways based on different pairs of binary-oppositional indicators: for example, by two 

electronic levels of an atom; by two kinds of polarization of a single photon (vertical 

polarization and horizontal polarization), etc. In the presented model approach, the 

author interprets each of the considered binary n-plet sequences of genomic DNAs as 

multi-qubit quantum-like systems.  

         Let us introduce, firstly, the notion of a genetic qubit, which can be used to 

analyze any long binary sequence in single-stranded DNAs as a two-level quantum-like 

system. One can begin with the consideration of DNA binary sequences based on 

oppositional indicators “2 or 3 hydrogen bonds” (see above section 7 about such binary 

H-sequences). In corresponding quantum-like system, one level corresponds to the 

indicator “2 hydrogen bonds” and the second level corresponds to the oppositional 

indicator “3 hydrogen bonds”. In other words, a corresponding genetic qubit is 

represented by these oppositional indicators, and the state of such qubit is a vector in 

its appropriate 2-dimensional Hilbert space. One can assume that the computational 

basis state |0> corresponds to the state “2 bonds” and the computational basis state |1> 

- to the state “3 bonds”. In this case, we have the following expression (9) for a state of 

such genetic qubit of hydrogen bonds 2 and 3 in sequence of H-monoplets in genomic 



        

 

 

DNAs. In this expression, √%2 denotes the amplitude of probability of the state |0>, 

and √%3 denotes the amplitude of probability of the state |1> (here %2 + %3 = 1). 

 

                                            |ψ1> = √%2 |0> + √%3 |1>                                           (9) 

 

By analogy, for the case of percentages of H-duplets in H-duplet-sequences of genomic 

DNAs, one can express a state of corresponding genetic 2-qubit by the expression (10): 

 

           |ψ2> = √%22 |00> + √%23 |01> + √%32 |10> + √%33 |11>                   (10) 

 

 In the case of percentages of H-triplets in H-triplet-sequences of genomic 

DNAs, one can express a state of corresponding genetic 3-qubit by the expression (11): 

 

      |ψ3> = √%222 |000> + √%223 |001> + √%232 |010> + √%233 |011> + 

      + √%322 |100> + √%323 |101> + √%332 |110> + √%333 |111>         (11) 

 

Similar n-qubit representations one can write for the cases of H-n-plets under n = 4, 5, 

… 

      We need to check from the point of view of the quantum formalisms, are 

phenomenological systems of percent values of H-n-plets in a concrete genomic DNA 

correspond to entangled states or not? To answer this question by studying a concrete 

DNA, let us take the data about percent values of H-n-plets in DNA human 

chromosome № 1 given in Table 1. Firstly, for this DNA, we need to study the 

following: is it possible to represent |ψ2> in the expression (10) as the tensor square of 

|ψ1> (that is |ψ1> ⨂ |ψ1>)? Expressions (12) give numeric data for a desired answer 

(numbers are rounded).  

 

            |ψ2> = √0,328 |00> + √0,255 |01> + √0.255 |10> + √0,162 |11>         

  |ψ1> ⨂ |ψ1> = (√0,583 |0> + √0,417 |1>) ⨂ (√0,583 |0> + √0,417 |1>) =    

      = √0,3399 |00>  +(√0,2431 |01>  + (√0,2431 |10>  +(√0,1739 |11>             (12)            

        

These expressions show that phenomenological percent values of H-duplets, 

which are shown in |ψ2>, differ from theoretical percent values of H-duplets generated 

by the tensor square |ψ1> ⨂ |ψ1>. So, it is not possible to accurately represent state |ψ2> 

as a tensor product |ψ1> ⨂ |ψ1>. It means that the state |ψ2> is non-separable (that is, 

entangled). Even this simplest test shows that entangled (non-separable) states of H-n-

plets systems are realized in genomic DNA. 

The results obtained on the quantum entanglement of the stochastic binary H-

n-sequence of the genomic DNAs is important due to the key importance of the concept 

of entanglement for the entire quantum informatics. The book [Nielsen, Chuang, 2010, 

p. xxiii] emphasizes: “entanglement is a key element in effects such as quantum 

teleportation, fast quantum algorithms, and quantum error-correction. It is, in short, a 

resource of great utility in quantum computation and quantum information. There is a 

thriving research community currently fleshing out the notion of entanglement as a new 

type of physical resource, finding principles which govern its manipulation and 

utilization”. We need note once more, that usually, in publications about quantum 

entanglements, researchers focus their attention on the entanglement of atoms and other 

elementary particles or the entanglement of spins. But this section draws attention to a 



        

 

 

question about quantum entanglement (or quantum-like entanglement) in quite other 

objects: stochastic information sequences of genomic DNAs.  

In connection with the topic of quantum informatics, it is also interesting that 

the alphabetic dyadic-shift matrices of n-plets percentages from binary genomic DNA 

sequences are decomposed into sums of orthogonal sparse matrices, as shown above in 

section 12. This seems interesting, since in quantum computers all calculations are 

based on unitary operators (gates) and any unitary operator can serve as a gate in 

quantum computing. Orthogonal operators are a special case of unitary operators. 

Further research is needed on the probable connection between the functioning of the 

genetic system and principles of quantum computing. 

 Similar using of quantum-information formalism can be applied to study a 

question on entanglement regarding percentages of n-plets in other binary sequences of 

genomic DNAs: RY-n-plets in purine-pyrimidine sequence and KM-n-plets in keto-

amino sequences. The following expressions show states of n-qubits in these cases, 

when computational basis states (like as |10>, etc) are based on other types of molecular 

binary-oppositional indicators than in the case of H-n-plets: 

 

- In the case of RY-n-plets:  

|ψ1> = √%r |0> + √%y |1>,    

            |ψ2> = √%rr |00> + √%ry |01> + √%yr |10> + √%yy |11>, and so on;   

        

- In the case of KM-n-plets:                                  

|ψ1> = √%K |0> + √%M |1>,    

|ψ2> = √%KK |00> + √%KM |01> + √%MK |10> + √%MM |11>, and so on;   

 

Some concluding remarks 

 

This article shows connections of the ancient principle “like begets like” not only with 

double-stranded DNAs but also with holistic families of structural molecular ensembles 

of the genetic coding system in their algebraic-matrix presentations. The author 

believes that this principle plays a key role in genetics, and therefore, within the 

framework of algebraic biology, many features of inherited biological structures can 

and should be studied precisely in connection with this principle. These include, for 

example, the following: morphogenetic symmetries; biological fractal-like patterns; 

conformal-geometric features of the space of visual perception according to the works 

[Kienle, 1964; Luneburg, 1950]; the golden section, which since the Renaissance is 

regarded as a mathematical symbol of self-reproduction; universal rules of stochastic 

organization of information sequences of genomic DNAs connected with dichotomies 

of probabilities and corresponding fractal-like dichotomous trees of probabilities. On 

this way, the discovery of universal rules of dichotomies of probabilities in information 

sequences of genomic DNAs, which fundamentally differ from inherited constructional 

dichotomies in biological bodies, shows that widely knows dichotomies in biological 

bodies have prototypes in sets of dichotomies of probabilities in informatics of genomic 

DNAs. This allowed formulating the author’s thought about existence of a hidden world 

of binary organized families of stochastic-energetic essences, which are hidden 

progenitors of biological structures. Under studying biological structures, we indirectly 

study structures of this hidden stochastic world. In this study, formalisms of tensor-

matrix analysis, hypercomplex numbers, and quantum informatics are useful. 



        

 

 

The described results show that the noted principle is essential for studying and 

modeling algebraic features of molecular ensembles of the genetic code including 

binary-oppositional properties among separate members and their groupings in these 

ensembles. New biological symmetries, connected with this principle, were revealed in 

the families of the genetic matrices and in stochastic organization of information 

sequences of genomic DNAs. Complementary replication (or interconnections) in a 

wide sense is a systemic phenomenon in the genetic organization, including 

dichotomous fractal-like trees of probabilities of genomic DNAs. 

The newly received knowledge about the algebraic features of the genetic 

molecular systems opens new approaches to understanding interconnections of the 

genetic system with structural peculiarities of inherited physiological systems. All 

physiological systems should be coordinated with the genetic code to be genetically 

encoded for their transmission to the next generations. This determines the importance 

of studying the algebraic features of the molecular genetic system for understanding the 

origin and modeling of structures of inherited physiological complexes, and also for the 

development of evolutionary biology and genetic biomechanics. The results obtained 

are applicable for the further development of code biology [Barbieri, 2015]. In study of 

genetic and other biological sequences, the described author’s method of hierarchical 

binary stochastics (or the stochastic matryoshka method) is recommended for using. 
It should be added that since the philosophical works of Martin Heidegger, there 

exists an idea that language is smarter than us. A rich language has an extensive history of 

development and effective application to reality. Using this or that language, we indirectly 

use all experience of its formation and applications to reality. As soon as the language is 

smarter than us, then a good language can guide us, suggesting new solutions and directions 

of search. The author encountered this feature of the well-developed and widely used 

scientific language of matrix-tensor analysis, which is one of the foundations of modern 

mathematical natural science: after receiving the first confirmations of this language 

adequacy for modeling a genetic coding system, the author began to exploit its rich and 

interconnected capabilities in the new scientific field, that is, in matrix genetics, guided by 

inner features of this algebraic language and obtaining new and valuable biological results. 

In other words, genetic structures are translated by the author into this algebraic language 

with final receiving completely new meanings and universal regularities to which this 

language has brought us. 
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